12 research outputs found

    Effects of ferric citrate on intracellular oxidative stress markers after hydrogen peroxide treatment of human U937 monocytes

    Get PDF
    Phosphate binders, such as iron (III) citrate hydrate (FCH), are essential medications for hemodialysis patients. Some in vivo studies have demonstrated that FCH prevented induction of oxidative stress in the presence of transferrin. However, how FCH affects iron-related oxidative stress in the absence of transferrin remains unclear. In the current study, we investigated the effects of ferric citrate (FC) on oxidative stress in the absence of transferrin in vitro to address this question. Human U937 monocytes were pretreated with FC, iron (II) chloride tetrahydrate (FeCl2・4H2O), iron (III) chloride hexahydrate (FeCl3・6H2O), or saccharated ferric oxide for 24 h and then treated with 10-mM hydrogen peroxide (H2O2) for 30 min. The final Fe concentrations were adjusted to approximately 200µg/dl. Iron concentration, intracellular reactive oxygen species (ROS) levels, and intracellular lipid peroxidation of the cell membrane were measured. After treatment with FC, iron concentration and ROS levels increased. Change in lipid peroxidation after treatment with FC was not observed. However, after treatment with H2O2, no change was observed in the intracellular ROS levels in FC-pretreated cells, whereas lipid peroxidation of the cell membrane was decreased. Despite the high iron concentration in FC-pretreated cells, neither intracellular ROS nor cell membrane lipid peroxidation levels were increased with H2O2 treatment. Their results might represent antioxidative effects of FC. The results of this study may contribute to a better understanding of the effects of oxidative stress in hemodialysis patients treated with FCH

    The effect of a prostaglandin E-1 derivative on the symptoms and quality of life of patients with lumbar spinal stenosis

    Get PDF
    Quality of life (QOL) is a concern for patients with lumbar spinal stenosis (LSS). In this study, QOL was examined using the 5-item EuroQol (EQ-5D). QOL and activities of daily living (ADL) were surveyed for 91 patients who visited 18 medical institutions in our prefecture and were diagnosed with LSS-associated intermittent claudication. A second survey was performed after a parts per thousand yen6 weeks for 79 of the subjects to evaluate therapy with limaprost (an oral prostaglandin E1 derivative) or etodolac (an NSAID). Symptoms, maximum walking time, QOL, ADL items, and relationships among these variables were investigated for all 91 patients. Leg pain, leg numbness, and low back pain while walking were surveyed by use of VAS scores (0-100). Leg pain, leg numbness, and low back pain while walking (VAS a parts per thousand yen25) were present in 83.5, 62.6, and 54.9 % of the patients in the first survey, and approximately half of the patients had a maximum walking time 30 min, showing that maximum walking time affected health-related QOL. Of the 79 patients who completed the second survey, 56 had taken limaprost and 23 (control group) had received etodolac. Limaprost improved possible walking time, reduced ADL interference, and significantly increased the EQ-5D utility score, whereas no significant changes occurred in the control group. Maximum walking time was prolonged by a parts per thousand yen10 min and the EQ-5D utility value was improved by a parts per thousand yen0.1 points in significantly more patients in the limaprost group than in the control group. According to the findings of this survey, at an average of 8 weeks after administration limaprost improved symptoms, QOL, and ADL in LSS patients whereas treatment with an NSAID reduced pain but did not have any other effects.ArticleJOURNAL OF ORTHOPAEDIC SCIENCE. 18(2):208-215 (2013)journal articl

    Radiosensitization Effect of Gold Nanoparticles on Plasmid DNA Damage Induced by Therapeutic MV X-rays

    No full text
    Gold nanoparticles (AuNPs) can be used with megavolt (MV) X-rays to exert radiosensitization effects, as demonstrated in cell survival assays and mouse experiments. However, the detailed mechanisms are not clear; besides physical dose enhancement, several chemical and biological processes have been proposed. Reducing the AuNP concentration while achieving sufficient enhancement is necessary for the clinical application of AuNPs. Here, we used positively charged (+) AuNPs to determine the radiosensitization effects of AuNPs combined with MV X-rays on DNA damage in vitro. We examined the effect of low concentrations of AuNPs on DNA damage and reactive oxygen species (ROS) generation. DNA damage was promoted by 1.4 nm +AuNP with dose enhancement factors of 1.4 ± 0.2 for single-strand breaks and 1.2 ± 0.1 for double-strand breaks. +AuNPs combined with MV X-rays induced radiosensitization at the DNA level, indicating that the effects were physical and/or chemical. Although −AuNPs induced similar ROS levels, they did not cause considerable DNA damage. Thus, dose enhancement by low concentrations of +AuNPs may have occurred with the increase in the local +AuNP concentration around DNA or via DNA binding. +AuNPs showed stronger radiosensitization effects than −AuNPs. Combining +AuNPs with MV X-rays in radiation therapy may improve clinical outcomes

    Radiosensitization Effect of Gold Nanoparticles on Plasmid DNA Damage Induced by Therapeutic MV X-Rays

    No full text
    Gold nanoparticles (AuNPs) can be used with megavolt (MV) X-rays to exert radiosensitization effects, as demonstrated in cell survival assays and mouse experiments. However, the detailed mechanisms are not clear; besides physical dose enhancement, several chemical and biological processes have been proposed. Reducing the AuNP concentration while achieving sufficient en-hancement is necessary for the clinical application of AuNPs. Here, we used positively charged (+) AuNPs to determine the radiosensitization effects of AuNPs combined with MV X-rays on DNA damage in vitro. We examined the effect of low concentrations of AuNPs on DNA damage and reactive oxygen species (ROS) generation. DNA damage was promoted by 1.4 nm +AuNP with dose enhancement factors of 1.4 ± 0.2 for single-strand breaks and 1.2 ± 0.1 for double-strand breaks. +AuNPs combined with MV X-rays induced radiosensitization at the DNA level, indicating that the effects were physical and/or chemical. Although −AuNPs induced similar ROS levels, they did not cause considerable DNA damage. Thus, dose enhancement by low concentrations of +AuNPs may have occurred with the increase in the local +AuNP concentration around DNA or via DNA binding. +AuNPs showed stronger radiosensitization effects than −AuNPs. Combining +AuNPs with MV X-rays in radiation therapy may improve clinical outcomes

    Effect of Gold Nanoparticle Radiosensitization on Plasmid DNA Damage Induced by High-Dose-Rate Brachytherapy.

    No full text
    Gold nanoparticles (AuNPs) are candidate radiosensitizers for medium-energy photon treatment, such as γ-ray radiation in high-dose-rate (HDR) brachytherapy. However, high AuNP concentrations are required for sufficient dose enhancement for clinical applications. Here, we investigated the effect of positively (+) charged AuNP radiosensitization of plasmid DNA damage induced by 192Ir γ-rays, and compared it with that of negatively (-) charged AuNPs

    Plasmon-Assisted Polarity Switching of a Photoelectric Conversion Device by UV and Visible Light Irradiation

    No full text
    The plasmon-induced charge separation between metallic nanoparticles and a semiconductor following an electron transfer process has been extensively studied as one of the mechanisms in plasmonic light energy conversion devices. In this study, we propose that the switching of photocurrent polarity can be realized by changing the rectification properties of plasmonic photoelectric conversion devices and utilizing the difference in carrier mobility between electrons and holes. We fabricated plasmonic photoelectric conversion devices using gold nanoparticles (Au-NPs), nickel oxide (NiO), and mobility-limited TiO<sub>2</sub> (ML-TiO<sub>2</sub>) to control the photocurrent polarity according to irradiation wavelengths of visible and UV light. A pulsed laser deposition technique was employed to deposit the ML-TiO<sub>2</sub> and NiO layers. The photoelectric properties were measured, and <i>in situ</i> spectroelectrochemical measurements were performed to investigate the relationship between the rectification properties of the plasmonic photoelectric conversion devices and the change in the Fermi level of the Au-NPs under UV light irradiation condition. Additionally, UV and visible light irradiation selectively induced the current of opposite polarity with the small applied voltage. The electron transfer phenomena from ML-TiO<sub>2</sub> to Au-NPs and from Au-NPs to ML-TiO<sub>2</sub> give us important information to understand plasmon-related charge separation

    Eprobe mediated RT-qPCR for the detection of leukemia-associated fusion genes.

    No full text
    The detection and quantification of leukemia-associated fusion gene transcripts play important roles in the diagnosis and follow-up of leukemias. To establish a standardized method without interlaboratory discrepancies, we developed a novel one-step reverse transcription quantitative PCR (RT-qPCR) assay, called "the Eprobe leukemia assay," for major and minor BCR-ABL1, RUNX1-RUNX1T1, and various isoforms of PML-RARA. This assay is comprised of Eprobes that are exciton-controlled hybridization-sensitive fluorescent oligonucleotides. Melting curve analyses were performed on synthetic quantitative standard RNAs with strict quality control. Quantification capacity was evaluated by comparison with TaqMan RT-qPCR using 67 primary leukemia patient samples. The lower limit of detection and the limit of quantification of this assay were less than 31.3 copies/reaction and 62.5 copies/reaction, respectively. This assay correctly detected the fusion genes in samples with 100% sensitivity and specificity. The specificity of the reactions was confirmed by melting curve analyses. The assay detected low-level expression of minor BCR-ABL1 co-expressed with major BCR-ABL1. These results illustrate the feasibility and high accuracy of the Eprobe leukemia assay, even for minimal residual disease monitoring
    corecore