6 research outputs found

    Implications of conformational flexibility, lipid binding, and regulatory domains in cell-traversal protein CelTOS for apicomplexan migration

    Get PDF
    Malaria and other apicomplexan-caused diseases affect millions of humans, agricultural animals, and pets. Cell traversal is a common feature used by multiple apicomplexan parasites to migrate through host cells and can be exploited to develop therapeutics against these deadly parasites. Here, we provide insights into the mechanism of the Cell-traversal protein for ookinetes and sporozoites (CelTOS), a conserved cell-traversal protein in apicomplexan parasites and malaria vaccine candidate. CelTOS has previously been shown to form pores in cell membranes to enable traversal of parasites through cells. We establish roles for the distinct protein regions of Plasmodium vivax CelTOS and examine the mechanism of pore formation. We further demonstrate that CelTOS dimer dissociation is required for pore formation, as disulfide bridging between monomers inhibits pore formation, and this inhibition is rescued by disulfide-bridge reduction. We also show that a helix-destabilizing amino acid, Pro127, allows CelTOS to undergo significant conformational changes to assemble into pores. The flexible C terminus of CelTOS is a negative regulator that limits pore formation. Finally, we highlight that lipid binding is a prerequisite for pore assembly as mutation of a phospholipids-binding site in CelTOS resulted in loss of lipid binding and abrogated pore formation. These findings identify critical regions in CelTOS and will aid in understanding the egress mechanism of malaria and other apicomplexan parasites as well as have implications for studying the function of other essential pore-forming proteins

    Non-Specific Signal Peptidase Processing of Extracellular Proteins in Staphylococcus aureus N315

    No full text
    Staphylococcus aureus is one of the major community-acquired human pathogens, with growing multidrug-resistance, leading to a major threat of more prevalent infections to humans. A variety of virulence factors and toxic proteins are secreted during infection via the general secretory (Sec) pathway, which requires an N-terminal signal peptide to be cleaved from the N-terminus of the protein. This N-terminal signal peptide is recognized and processed by a type I signal peptidase (SPase). SPase-mediated signal peptide processing is the crucial step in the pathogenicity of S. aureus. In the present study, the SPase-mediated N-terminal protein processing and their cleavage specificity were evaluated using a combination of N-terminal amidination bottom-up and top-down proteomics-based mass spectrometry approaches. Secretory proteins were found to be cleaved by SPase, specifically and non-specifically, on both sides of the normal SPase cleavage site. The non-specific cleavages occur at the relatively smaller residues that are present next to the −1, +1, and +2 locations from the original SPase cleavage site to a lesser extent. Additional random cleavages at the middle and near the C-terminus of some protein sequences were also observed. This additional processing could be a part of some stress conditions and unknown signal peptidase mechanisms

    Azoreductase: a key player of xenobiotic metabolism

    No full text
    Abstract Azoreductases are diverse flavoenzymes widely present among microorganisms and higher eukaryotes. They are mainly involved in the biotransformation and detoxification of azo dyes, nitro-aromatic, and azoic drugs. Reduction of azo bond and reductive activation of pro-drugs at initial level is a crucial stage in degradation and detoxification mechanisms. Using azoreductase-based microbial enzyme systems that are biologically accepted and ecofriendly demonstrated complete degradation of azo dyes. Azoreductases are flavin-containing or flavin-free group of enzymes, utilizing the nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as a reducing equivalent. Azoreductases from anaerobic microorganisms are highly oxygen sensitive, while azoreductases from aerobic microorganisms are usually oxygen insensitive. They have variable pH, temperature stability, and wide substrate specificity. Azo dyes, nitro-aromatic compounds, and quinones are the known substrates of azoreductase. The present review gives an overview of recent developments in the known azoreductase enzymes from different microorganisms, its novel classification scheme, significant characteristics, and their plausible degradation mechanisms

    Impact of Amidination on Peptide Fragmentation and Identification in Shotgun Proteomics

    No full text
    Peptide amidination labeling using <i>S</i>-methyl thioacetimidate (SMTA) is investigated in an attempt to increase the number and types of peptides that can be detected in a bottom-up proteomics experiment. This derivatization method affects the basicity of lysine residues and is shown here to significantly impact the idiosyncracies of peptide fragmentation and peptide detectability. The unique and highly reproducible fragmentation properties of SMTA-labeled peptides, such as the strong propensity for forming b<sub>1</sub> fragment ions, can be further exploited to modify the scoring of peptide-spectrum pairs and improve peptide identification. To this end, we have developed a supervised postprocessing algorithm to exploit these characteristics of peptides labeled by SMTA. Our experiments show that although the overall number of identifications are similar, the SMTA modification enabled the detection of 16–26% peptides not previously observed in comparable CID/HCD tandem mass spectrometry experiments without SMTA labeling

    Proceedings of National Conference on Relevance of Engineering and Science for Environment and Society

    No full text
    This conference proceedings contains articles on the various research ideas of the academic community and practitioners presented at the National Conference on Relevance of Engineering and Science for Environment and Society (R{ES}2 2021). R{ES}2 2021 was organized by Shri Pandurang Pratishthan’s, Karmayogi Engineering College, Shelve, Pandharpur, India on July 25th, 2021. Conference Title: National Conference on Relevance of Engineering and Science for Environment and SocietyConference Acronym: R{ES}2 2021Conference Date: 25 July 2021Conference Location: Online (Virtual Mode)Conference Organizers: Shri Pandurang Pratishthan’s, Karmayogi Engineering College, Shelve, Pandharpur, India
    corecore