16 research outputs found

    Possible link between dental diseases and arteriosclerosis in patients on hemodialysis.

    No full text
    BACKGROUND:Patients on hemodialysis must undergo this procedure at a hospital three times weekly and might be unable to visit a dentist. In addition, dentists might hesitate to provide oral care because such patients tend to bleed because they are medicated with anticoagulants, are susceptible to bacterial infections, and might have unusual drug reactions. We postulated that patients on hemodialysis have worse oral status than healthy people, which in turn might predispose such patients to systemic complications. METHODS:We compared the status of dental caries and periodontal diseases among 80 patients on hemodialysis and 76 healthy individuals (controls) using the decayed, missing, or filled teeth (DMFT) index, total number of C4 teeth (destruction of the entire tooth crown), and periodontal pocket depth. Clinical data were analyzed after all patients on hemodialysis and controls provided written, informed consent to participate in the study. RESULTS:Total number of C4 teeth (p = 0.021), missing teeth (MT) index (p = 0.0302), and DMFT index score ≥ 24 (p = 0.017) were significantly higher in patients on hemodialysis than controls. Pulse pressure (p = 0.0042) and the prevalence of a history of heart disease such as angina pectoris and acute myocardial infarction (p = 0.029) were higher in patients on hemodialysis with higher (≥ 24) than lower (< 24) DMFT index scores. Periodontal pocket depth was not significantly different between these two groups. CONCLUSION:Worse status of dental caries is possibly associated with arteriosclerosis among patients on hemodialysis

    Improvement of Cycle Capability of Fe-Substituted Li2S-Based Positive Electrode Materials by Doping with Lithium Iodide

    Get PDF
    For an attempt to improve the cycle capability of the Li8FeS5 cells, we have prepared LiI-doped Li8FeS5 composite positive electrode materials. The obtained Li8FeS5·xLiI sample cells showed the improved cycle capability, though the initial capacity value decreased with proportional to the mass of LiI. The improved cycle performance was attributable to the suppressed resistance rise of the cells, due probably to the suppression of high-resistive surface precipitates formed by the reaction between the active material and the electrolyte. The dopant LiI would stabilize the local structure against Li extraction/insertion reactions, as well as suppress the reaction with the electrolyte, leading to the improved cycle performance

    FABP3 protein promotes α-synuclein oligomerization associated with 1-Methyl-1,2,3,6-tetrahydropiridine-induced neurotoxicity

    No full text
    α-Synuclein (αSyn) accumulation in dopaminergic (DA) neurons is partly regulated by long-chain polyunsaturated fatty acids. We found that fatty acid-binding protein 3 (FABP3, H-FABP), a factor critical for arachidonic acid (AA) transport and metabolism in brain, is highly expressed in DA neurons. Fabp3 knock-out (Fabp3(−/−)) mice were resistant to 1-methyl-1,2,3,6-tetrahydropiridine-induced DA neurodegeneration in the substantia nigra pars compacta and showed improved motor function. Interestingly, FABP3 interacted with αSyn in the substantia nigra pars compacta, and αSyn accumulation following 1-methyl-1,2,3,6-tetrahydropiridine treatment was attenuated in Fabp3(−/−) compared with wild-type mice. We confirmed that FABP3 overexpression aggravates AA-induced αSyn oligomerization and promotes cell death in PC12 cells, whereas overexpression of a mutant form of FABP3 lacking fatty-acid binding capacity did not. Taken together, αSyn oligomerization in DA neurons is likely aggravated by AA through FABP3 in Parkinson disease pathology

    Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome

    Get PDF
    難治性疾患「ATR-X症候群」の治療に新たな光 --重度知的障がいに対する新しい治療薬候補の発見--. 京都大学プレスリリース. 2018-05-22.Alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome is caused by mutations in ATRX, which encodes a chromatin-remodeling protein. Genome-wide analyses in mouse and human cells indicate that ATRX tends to bind to G-rich sequences with a high potential to form G-quadruplexes. Here, we report that Atrx mutation induces aberrant upregulation of Xlr3b expression in the mouse brain, an outcome associated with neuronal pathogenesis displayed by ATR-X model mice. We show that ATRX normally binds to G-quadruplexes in CpG islands of the imprinted Xlr3b gene, regulating its expression by recruiting DNA methyltransferases. Xlr3b binds to dendritic mRNAs, and its overexpression inhibits dendritic transport of the mRNA encoding CaMKII-α, promoting synaptic dysfunction. Notably, treatment with 5-ALA, which is converted into G-quadruplex-binding metabolites, reduces RNA polymerase II recruitment and represses Xlr3b transcription in ATR-X model mice. 5-ALA treatment also rescues decreased synaptic plasticity and cognitive deficits seen in ATR-X model mice. Our findings suggest a potential therapeutic strategy to target G-quadruplexes and decrease cognitive impairment associated with ATR-X syndrome
    corecore