22 research outputs found
Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare
Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolic Origanum vulgare extract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentration-dependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxide-induced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol
Activity and Interactions of Liposomal Antibiotics in Presence of Polyanions and Sputum of Patients with Cystic Fibrosis
BACKGROUND:To compare the effectiveness of liposomal tobramycin or polymyxin B against Pseudomonas aeruginosa in the Cystic Fibrosis (CF) sputum and its inhibition by common polyanionic components such as DNA, F-actin, lipopolysaccharides (LPS), and lipoteichoic acid (LTA). METHODOLOGY:Liposomal formulations were prepared from a mixture of 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) or 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) and Cholesterol (Chol), respectively. Stability of the formulations in different biological milieus and antibacterial activities compared to conventional forms in the presence of the aforementioned inhibitory factors or CF sputum were evaluated. RESULTS:The formulations were stable in all conditions tested with no significant differences compared to the controls. Inhibition of antibiotic formulations by DNA/F-actin and LPS/LTA was concentration dependent. DNA/F-actin (125 to 1000 mg/L) and LPS/LTA (1 to 1000 mg/L) inhibited conventional tobramycin bioactivity, whereas, liposome-entrapped tobramycin was inhibited at higher concentrations--DNA/F-actin (500 to 1000 mg/L) and LPS/LTA (100 to 1000 mg/L). Neither polymyxin B formulation was inactivated by DNA/F-actin, but LPS/LTA (1 to 1000 mg/L) inhibited the drug in conventional form completely and higher concentrations of the inhibitors (100 to 1000 mg/L) was required to inhibit the liposome-entrapped polymyxin B. Co-incubation with inhibitory factors (1000 mg/L) increased conventional (16-fold) and liposomal (4-fold) tobramycin minimum bactericidal concentrations (MBCs), while both polymyxin B formulations were inhibited 64-fold. CONCLUSIONS:Liposome-entrapment reduced antibiotic inhibition up to 100-fold and the CFU of endogenous P. aeruginosa in sputum by 4-fold compared to the conventional antibiotic, suggesting their potential applications in CF lung infections
Inflammasome Activation by ATP Enhances Citrobacter rodentium Clearance through ROS Generation
Background: Nod-like receptor family, pyrin domain containing 3 (NLRP3) is an important cytosolic sensor of cellular stress and infection. Once activated, NLRP3 forms a multiprotein complex (inflammasome) that triggers the maturation and secretion of interleukin (IL)-1Ξ² and IL-18. We aimed to define the consequences of NLRP3 induction, utilizing exogenous adenosine triphosphate (ATP) as an inflammasome activator, to determine if inflammasome activation increases macrophage killing of Citrobacter rodentium and define mechanisms. Methods: Bacterial survival was measured using a gentamicin protection assay. Inflammasome activation or inhibition in mouse J774A.1 macrophages were assessed by measuring IL-1Ξ²; cytokines and reactive oxygen species (ROS) were measured by ELISA and DCFDA, respectively. Results: Activation of the inflammasome increased bacterial killing by macrophages and its inhibition attenuated this effect with no impact on phagocytosis or cell death. Furthermore, inflammasome activation suppressed pro-inflammatory cytokines during infection, possibly due to more effective bacterial killing. While the infection increased ROS production, this effect was reduced by inflammasome inhibitors, indicating that ROS is inflammasome-dependent. ROS inhibitors increased bacterial survival in the presence of ATP, suggesting that inflammasome-induced bacterial killing is mediated, at least in part, by ROS activity. Conclusion: Improving inflammasome activity during infection may increase bacterial clearance by macrophages and reduce subsequent microbe-induced inflammation
Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents
Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolic Origanum vulgare extract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentrationdependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxideinduced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol
A balanced IL-1Ξ² activity is required for host response to Citrobacter rodentium infection.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1Ξ². Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1Ξ² to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3(-/-) and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1Ξ² (0.5 Β΅g/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3(-/-) mice developed severe colitis; IL-1Ξ² treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3(-/-) mice. In contrast, IL-1Ξ² treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3(-/-) mice, and increased severity of disease in WT mice with IL-1Ξ² treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3(-/-) compared to WT mice. IL-1Ξ² treatments elevated macrophage infiltration into infected crypts in Nlrp3(-/-) mice, suggesting that IL-1Ξ² may improve macrophage function, as exogenous administration of IL-1Ξ² increased phagocytosis of C. rodentium by peritoneal Nlrp3(-/-) macrophages in vitro. As well, the exogenous administration of IL-1Ξ² to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3(-/-) mice with IL-1Ξ² seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1Ξ² appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1Ξ² improved bacterial clearance in Nlrp3(-/-) mice but increased tissue damage when given to WT mice
Liposome-entrapped antibiotic stability assayed by microbiological assay.
<p>The stability of the liposomal formulations were examined at 37Β°C in an 18 h period in the presence of PBS, CAMH broth, supernatant of biofilm forming <i>P. aeruginosa</i>, a combination of DNA, F-actin, LPS, and LTA, and diluted intact or autoclaved sputum.</p
Bactericidal activity and inhibition of antibiotics by DNA, F-actin, LPS and LTA.
<p>A) Bactericidal concentrations of free tobramycin (F-TOB) and liposomal tobramycin (L-TOB) were incubated in presence of LPS/LTA (1 to 1000 mg/L). B) Bactericidal concentrations of free polymyxin B (F-PMB) and liposomal polymyxin B (L-PMB) were incubated in presence of DNA/F-actin/LPS/LTA (125 to 1000 mg/L). Growth controls are represented at 0 h (empty bar), and 3 h (dark bar). Comparisons between free and liposomal formulations were made by ANOVA one-way post <i>t</i>-test, and <i>P</i>-values were considered significant when (**) <i>p</i><0.01, (***) <i>p</i><0.001.</p
CF Sputum treatment with various antibiotic formulations.
<p>CFU counts were made after incubation of diluted CF sputum (1βΆ10 w/v) in PBS with two-fold dilutions of free tobramycin at 512 mg/L (F-TOB), liposomal tobramycin at 128 mg/L (L-TOB), free polymyxin B at 32 mg/L (F-PMB), and liposomal polymyxin B at 8 mg/L (L-PMB). Growth controls are represented at 0 h (empty bar), and 18 h (dark bar).</p