8 research outputs found

    Frequency-dependent higher-order Stokes singularities near a planar elastic boundary: implications for the hydrodynamics of an active microswimmer near an elastic interface

    Get PDF
    The emerging field of self-driven active particles in fluid environments has recently created significant interest in the biophysics and bioengineering communities owing to their promising future biomedical and technological applications. These microswimmers move autonomously through aqueous media where under realistic situations they encounter a plethora of external stimuli and confining surfaces with peculiar elastic properties. Based on a far-field hydrodynamic model, we present an analytical theory to describe the physical interaction and hydrodynamic couplings between a self-propelled active microswimmer and an elastic interface that features resistance toward shear and bending. We model the active agent as a superposition of higher-order Stokes singularities and elucidate the associated translational and rotational velocities induced by the nearby elastic boundary. Our results show that the velocities can be decomposed in shear and bending related contributions which approach the velocities of active agents close to a no-slip rigid wall in the steady limit. The transient dynamics predict that contributions to the velocities of the microswimmer due to bending resistance are generally more pronounced than to shear resistance. Our results provide insight into the control and guidance of artificial and synthetic self-propelling active microswimmers near elastic confinements.Comment: 20 pages, 3 figures. To appear in PRE. Abstract shortened to comply with the arXiv limit of 1920 character

    Hydrodynamic Choreographies of Microswimmers.

    No full text

    Flow characteristics of Chlamydomonas

    No full text

    Hydrodynamic Choreographies of Microswimmers

    Get PDF
    Abstract We unveil orbital topologies of two nearby swimming microorganisms using an artificial microswimmer, called Quadroar. Depending on the initial conditions of the microswimmers, we find diverse families of attractors including dynamical equilibria, bound orbits, braids, and pursuit–evasion games. We also observe a hydrodynamic slingshot effect: a system of two hydrodynamically interacting swimmers moving along braids can advance in space faster than non-interacting swimmers that have the same actuation parameters and initial conditions as the interacting ones. Our findings suggest the existence of complex collective behaviors of microswimmers, from equilibrium to rapidly streaming states
    corecore