3 research outputs found

    Magnetic Hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review

    Get PDF
    Introduction: Hyperthermia therapy (HT) is a recognized treatment modality, that can sensitize tumors to the effects of radiotherapy (RT) and chemotherapy by heating up tumor cells to 40�45 °C. The advantages of noninvasive inductive magnetic hyperthermia (MH) over RT or chemotherapy in the treatment of recurrent/progressive glioma have been confirmed by several clinical trials. Thus, here we have conducted a systematic review to provide a concise, albeit brief, account of the currently available literature regarding this topic. Methods: Five databases, PubMed/Medline, Embace, Ovid, WOS, and Scopus, were investigated to identify clinical studies comparing overall survival (OS) following RT/chemotherapy versus RT/chemotherapy + MH. Results: Eleven articles were selected for this systematic review, including reports on 227 glioma patients who met the study inclusion criteria. The papers included in this review comprised nine pilot clinical trials, one non-randomized clinical trial, and one retrospective investigation. As the clinical trials suggested, MH improved OS in primary glioblastoma (GBM), however, in the case of recurrent glioblastoma, no significant change in OS was reported. All 11 studies ascertained that no major side effects were observed during MH therapy. Conclusion: Our systematic review indicates that MH therapy as an adjuvant for RT could result in improved survival, compared to the therapeutic outcomes achieved with RT alone in GBM, especially by intratumoral injection of magnetic nanoparticles. However, heterogeneity in the methodology of the most well-known studies, and differences in the study design may significantly limit the extent to which conclusions can be drawn. Thus, further investigations are required to shed more light on the efficacy of MH therapy as an adjuvant treatment modality in GBM. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature

    Malignancy probability map as a novel imaging biomarker to predict malignancy distribution: employing MRS in GBM patients

    No full text
    The main aim of this study was to propose a new statistical method for evaluation of spatial malignancy distribution within Magnetic Resonance Spectroscopy (MRS) grid in Glioblastoma Multiforme patients. Voxels with different malignancy probabilities were presented as a novel MRS-based Malignancy Probability Map (MPM). For this purpose, a predictive probability-based clustering approach was developed, including the two following steps: (1) Gaussian Mixture Model, (2) Quadratic Discriminate Analysis coupled with Genetic Algorithm. Clustered probability values from two methods were then integrated to exploit the MPM. Results show that the suggested method is able to estimate the malignancy distribution with over 90 sensitivity and specificity. The proposed MRS-based MPM has an acceptable accuracy for providing useful complementary information about regional diffuse glioma malignancy, with the potential to lead to better detection of tumoral regions with high probability of malignancy. So, it also may encourage the use of additional information of this map as a tool for dose painting. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    Malignancy probability map as a novel imaging biomarker to predict malignancy distribution: employing MRS in GBM patients

    No full text
    The main aim of this study was to propose a new statistical method for evaluation of spatial malignancy distribution within Magnetic Resonance Spectroscopy (MRS) grid in Glioblastoma Multiforme patients. Voxels with different malignancy probabilities were presented as a novel MRS-based Malignancy Probability Map (MPM). For this purpose, a predictive probability-based clustering approach was developed, including the two following steps: (1) Gaussian Mixture Model, (2) Quadratic Discriminate Analysis coupled with Genetic Algorithm. Clustered probability values from two methods were then integrated to exploit the MPM. Results show that the suggested method is able to estimate the malignancy distribution with over 90 sensitivity and specificity. The proposed MRS-based MPM has an acceptable accuracy for providing useful complementary information about regional diffuse glioma malignancy, with the potential to lead to better detection of tumoral regions with high probability of malignancy. So, it also may encourage the use of additional information of this map as a tool for dose painting. © 2018, Springer Science+Business Media, LLC, part of Springer Nature
    corecore