2 research outputs found

    A ROBUST OPTIMIZATION MODEL FOR A LOCATION-ARC ROUTING PROBLEM WITH DEMAND UNCERTAINTY

    No full text
    The present article considers a location-arc routing problem (LARP) where the demands are on the edges rather than nodes on an undirected network. A mixed integer programming model is developed for an LARP with vehicle and depot capacity constraints and a fleet of heterogeneous vehicles. To adapt with reality, it is assumed that the demand of each road is an uncertain value that belongs to a bounded uncertainty set. In order to have a less conservative decision, we employ the robust optimization model proposed by Bertsimas and Sim (2003) to handle uncertainty. The proposed robust model determines a subset of potential depots to be opened along with their allocated roads in order to have an efficient location-routing decision which is immune to different realization of uncertainties. The proposed robust model is less sensitive to demand variations and is validated through Monte-Carlo simulation and relative extra cost (REC) measure with promising results. The results of sensitivity analysis showed that by increasing the degrees of conservatism, planners may employ more vehicles. Also, more depots may be opened to service all required roads

    A mathematical model for the capacitated location-arc routing problem with deadlines and heterogeneous fleet

    Get PDF
    This paper considers a Capacitated Location-Arc Routing Problem (CLARP) with Deadlines (CLARPD) and a fleet of capacitated heterogeneous vehicles. The proposed mixed integer programming model determines a subset of potential depots to be opened, the served roads within predefined deadlines, and the vehicles assigned to each open depot. In addition, efficient routing plans are determined to minimize total establishment and traveling costs. Since the CLARP is NP-hard, a Genetic Algorithm (GA) is presented to consider proposed operators, and a constructive heuristic to generate initial solutions. In addition, a Simulated Annealing (SA) algorithm is investigated to compare the performance of the GA. Computational experiments are carried out for several test instances. The computational results show that the proposed GA is promising. Finally, sensitivity analysis confirms that the developed model can meet arc routing timing requirements more precisely compared to the classical Capacitated Arc Routing Problem (CARP). First published online 26 September 201
    corecore