284 research outputs found
Synchronized single electron emission from dynamical quantum dots
We study synchronized quantized charge pumping through several dynamical
quantum dots (QDs) driven by a single time modulated gate signal. We show that
the main obstacle for synchronization being the lack of uniformity can be
overcome by operating the QDs in the decay cascade regime. We discuss the
mechanism responsible for lifting the stringent uniformity requirements. This
enhanced functionality of dynamical QDs might find applications in
nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP
A quantized current source with mesoscopic feedback
We study a mesoscopic circuit of two quantized current sources, realized by
non-adiabatic single- electron pumps connected in series with a small
micron-sized island in between. We find that quantum transport through the
second pump can be locked onto the quantized current of the first one by a
feedback due to charging of the mesoscopic island. This is confirmed by a
measurement of the charge variation on the island using a nearby charge
detector. Finally, the charge feedback signal clearly evidences loading into
excited states of the dynamic quantum dot during single-electron pump
operation
Constructive role of non-adiabaticity for quantized charge pumping
We investigate a recently developed scheme for quantized charge pumping based
on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated
nanowire. It has been shown theoretically that non-adiabaticity is
fundamentally required to realize single-parameter pumping, while in previous
multi-parameter pumping schemes it caused unwanted and less controllable
currents. In this paper we demonstrate experimentally the constructive and
destructive role of non-adiabaticity by analysing the pumping current over a
broad frequency range.Comment: Presented at ICPS 2010, July 25 - 30, Seoul, Kore
Integrated quantized electronics: a semiconductor quantized voltage source
The Josephson effect in superconductors links a quantized output voltage Vout
= f \cdot(h/2e) to the natural constants of the electron's charge e, Planck's
constant h, and to an excitation frequency f with important applications in
electrical quantum metrology. Also semiconductors are routinely applied in
electrical quantum metrology making use of the quantum Hall effect. However,
despite their broad range of further applications e.g. in integrated circuits,
quantized voltage generation by a semiconductor device has never been obtained.
Here we report a semiconductor quantized voltage source generating quantized
voltages Vout = f\cdot(h/e). It is based on an integrated quantized circuit of
a single electron pump operated at pumping frequency f and a quantum Hall
device monolithically integrated in series. The output voltages of several \muV
are expected to be scalable by orders of magnitude using present technology.
The device might open a new route towards the closure of the quantum
metrological triangle. Furthermore it represents a universal electrical quantum
reference allowing to generate quantized values of the three most relevant
electrical units of voltage, current, and resistance based on fundamental
constants using a single device.Comment: 15 pages, 3 figure
Generation of energy selective excitations in quantum Hall edge states
We operate an on-demand source of single electrons in high perpendicular
magnetic fields up to 30T, corresponding to a filling factor below 1/3. The
device extracts and emits single charges at a tunable energy from and to a
two-dimensional electron gas, brought into well defined integer and fractional
quantum Hall (QH) states. It can therefore be used for sensitive electrical
transport studies, e.g. of excitations and relaxation processes in QH edge
states
- …
