14 research outputs found

    Quantum phase space trajectories with application to quantum cosmology

    Full text link
    We develop an approach to quantum dynamics based on quantum phase space trajectories. The latter are built from a unitary irreducible representation of the symmetry group of the respective classical phase space. We use a quantum action functional to derive the basic equations. In principle, our formulation is equivalent to the Hilbert space formulation. However, the former allows for consistent truncations to reduced phase spaces in which approximate quantum dynamics can be derived. We believe that our approach can be very useful in the domain of quantum cosmology and therefore, we use the cosmological phase space example to establish the basic equations of this formalism.Comment: 11 pages, 4 figures, the new version contains improved discussion

    Time crystal platform: from quasi-crystal structures in time to systems with exotic interactions

    Full text link
    Time crystals are quantum many-body systems which, due to interactions between particles, are able to spontaneously self-organize their motion in a periodic way in time by analogy with the formation of crystalline structures in space in condensed matter physics. In solid state physics properties of space crystals are often investigated with the help of external potentials that are spatially periodic and reflect various crystalline structures. A similar approach can be applied for time crystals, as periodically driven systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that condensed matter problems ranging from single particles in potentials of quasi-crystal structure to many-body systems with exotic long-range interactions can be realized in the time domain with an appropriate periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to destructive interference if the atomic scattering length is modulated in time.Comment: misprints correcte

    Quantum Machine Learning for Remote Sensing: Exploring potential and challenges

    Full text link
    The industry of quantum technologies is rapidly expanding, offering promising opportunities for various scientific domains. Among these emerging technologies, Quantum Machine Learning (QML) has attracted considerable attention due to its potential to revolutionize data processing and analysis. In this paper, we investigate the application of QML in the field of remote sensing. It is believed that QML can provide valuable insights for analysis of data from space. We delve into the common beliefs surrounding the quantum advantage in QML for remote sensing and highlight the open challenges that need to be addressed. To shed light on the challenges, we conduct a study focused on the problem of kernel value concentration, a phenomenon that adversely affects the runtime of quantum computers. Our findings indicate that while this issue negatively impacts quantum computer performance, it does not entirely negate the potential quantum advantage in QML for remote sensing.Comment: 2 pages, 2 figures. Presented at the Big Data from Space 2023 conferenc

    Detecting Clouds in Multispectral Satellite Images Using Quantum-Kernel Support Vector Machines

    Get PDF
    Support vector machines (SVMs) are a well-established classifier effectively deployed in an array of classification tasks. In this work, we consider extending classical SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) are presented. Here, the pixels are mapped to the Hilbert space using a family of parameterized quantum feature maps (related to quantum kernels). The parameters are optimized to maximize the kernel target alignment. The quantum kernels have been selected such that they enabled analysis of numerous relevant properties while being able to simulate them with classical computers on a real-life large-scale dataset. Specifically, we approach the problem of cloud detection in the multispectral satellite imagery, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy comparable to the classical SVM with the RBF kernel for large datasets. Interestingly, for large datasets, the high accuracy was also observed for the simple quantum kernels, lacking quantum entanglement.Comment: 12 pages, 10 figure

    Cloud Detection in Multispectral Satellite Images Using Support Vector Machines With Quantum Kernels

    Full text link
    Support vector machines (SVMs) are a well-established classifier effectively deployed in an array of pattern recognition and classification tasks. In this work, we consider extending classic SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) is presented. It consists of the Quantum Kernel Estimation (QKE) procedure combined with a classic SVM training routine. The pixel data are mapped to the Hilbert space using ZZ-feature maps acting on the parameterized ansatz state. The parameters are optimized to maximize the kernel target alignment. We approach the problem of cloud detection in satellite image data, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy on par with classic SVMs.Comment: Prepared for IGARSS 2023 Proceedings, 4 pages, 2 figure

    Optimizing Kernel-Target Alignment for cloud detection in multispectral satellite images

    Full text link
    The optimization of Kernel-Target Alignment (TA) has been recently proposed as a way to reduce the number of hardware resources in quantum classifiers. It allows to exchange highly expressive and costly circuits to moderate size, task oriented ones. In this work we propose a simple toy model to study the optimization landscape of the Kernel-Target Alignment. We find that for underparameterized circuits the optimization landscape possess either many local extrema or becomes flat with narrow global extremum. We find the dependence of the width of the global extremum peak on the amount of data introduced to the model. The experimental study was performed using multispectral satellite data, and we targeted the cloud detection task, being one of the most fundamental and important image analysis tasks in remote sensing.Comment: Prepared for IGARSS 2023 Proceedings, 4 pages, 4 figure

    Quantum Computing for Climate Change Detection, Climate Modeling, and Climate Digital Twin

    Get PDF
    This study explores the potential of quantum machine learning and quantum computing for climate change detection, climate modeling, and climate digital twin. We additionally consider the time and energy consumption of quantum machines and classical computers. Moreover, we identified several use-case instances for climate change detection, climate modeling, and climate digital twin that are challenging for conventional computers but can be tackled efficiently with quantum machines or by integrating them with classical computers. We also evaluated the efficacy of quantum annealers, quantum simulators, and universal quantum computers, each designed to solve specific types and kinds of computational problems that are otherwise difficult
    corecore