4,767 research outputs found

    Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings

    Full text link
    We study the topology of Hamiltonian-minimal Lagrangian submanifolds N in C^m constructed from intersections of real quadrics in a work of the first author. This construction is linked via an embedding criterion to the well-known Delzant construction of Hamiltonian toric manifolds. We establish the following topological properties of N: every N embeds as a submanifold in the corresponding moment-angle manifold Z, and every N is the total space of two different fibrations, one over the torus T^{m-n} with fibre a real moment-angle manifold R, and another over a quotient of R by a finite group with fibre a torus. These properties are used to produce new examples of Hamiltonian-minimal Lagrangian submanifolds with quite complicated topology.Comment: 14 pages, published version (minor changes

    Superpolynomials for toric knots from evolution induced by cut-and-join operators

    Full text link
    The colored HOMFLY polynomials, which describe Wilson loop averages in Chern-Simons theory, possess an especially simple representation for torus knots, which begins from quantum R-matrix and ends up with a trivially-looking split W representation familiar from character calculus applications to matrix models and Hurwitz theory. Substitution of MacDonald polynomials for characters in these formulas provides a very simple description of "superpolynomials", much simpler than the recently studied alternative which deforms relation to the WZNW theory and explicitly involves the Littlewood-Richardson coefficients. A lot of explicit expressions are presented for different representations (Young diagrams), many of them new. In particular, we provide the superpolynomial P_[1]^[m,km\pm 1] for arbitrary m and k. The procedure is not restricted to the fundamental (all antisymmetric) representations and the torus knots, still in these cases some subtleties persist.Comment: 23 pages + Tables (51 pages

    Quantum interference effects in p-Si1−xGex quantum wells

    Get PDF
    Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field

    Generalized matrix models and AGT correspondence at all genera

    Get PDF
    We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-Witten curve for the N=2 gauge theory as the spectral curve of the generalized matrix model, thus providing a check of AGT correspondence at all genera.Comment: 19 pages; v2: version to appear in JHE

    Brezin-Gross-Witten model as "pure gauge" limit of Selberg integrals

    Get PDF
    The AGT relation identifies the Nekrasov functions for various N=2 SUSY gauge theories with the 2d conformal blocks, which possess explicit Dotsenko-Fateev matrix model (beta-ensemble) representations the latter being polylinear combinations of Selberg integrals. The "pure gauge" limit of these matrix models is, however, a non-trivial multiscaling large-N limit, which requires a separate investigation. We show that in this pure gauge limit the Selberg integrals turn into averages in a Brezin-Gross-Witten (BGW) model. Thus, the Nekrasov function for pure SU(2) theory acquires a form very much reminiscent of the AMM decomposition formula for some model X into a pair of the BGW models. At the same time, X, which still has to be found, is the pure gauge limit of the elliptic Selberg integral. Presumably, it is again a BGW model, only in the Dijkgraaf-Vafa double cut phase.Comment: 21 page

    BGWM as Second Constituent of Complex Matrix Model

    Full text link
    Earlier we explained that partition functions of various matrix models can be constructed from that of the cubic Kontsevich model, which, therefore, becomes a basic elementary building block in "M-theory" of matrix models. However, the less topical complex matrix model appeared to be an exception: its decomposition involved not only the Kontsevich tau-function but also another constituent, which we now identify as the Brezin-Gross-Witten (BGW) partition function. The BGW tau-function can be represented either as a generating function of all unitary-matrix integrals or as a Kontsevich-Penner model with potential 1/X (instead of X^3 in the cubic Kontsevich model).Comment: 42 page
    • …
    corecore