2,205 research outputs found

    Lagrange-Fedosov Nonholonomic Manifolds

    Full text link
    We outline an unified approach to geometrization of Lagrange mechanics, Finsler geometry and geometric methods of constructing exact solutions with generic off-diagonal terms and nonholonomic variables in gravity theories. Such geometries with induced almost symplectic structure are modelled on nonholonomic manifolds provided with nonintegrable distributions defining nonlinear connections. We introduce the concept of Lagrange-Fedosov spaces and Fedosov nonholonomic manifolds provided with almost symplectic connection adapted to the nonlinear connection structure. We investigate the main properties of generalized Fedosov nonholonomic manifolds and analyze exact solutions defining almost symplectic Einstein spaces.Comment: latex2e, v3, published variant, with new S.V. affiliatio

    Feature Selection with the Boruta Package

    Get PDF
    This article describes a R package Boruta, implementing a novel feature selection algorithm for finding \emph{all relevant variables}. The algorithm is designed as a wrapper around a Random Forest classification algorithm. It iteratively removes the features which are proved by a statistical test to be less relevant than random probes. The Boruta package provides a convenient interface to the algorithm. The short description of the algorithm and examples of its application are presented.

    Deformation Quantization of Almost Kahler Models and Lagrange-Finsler Spaces

    Full text link
    Finsler and Lagrange spaces can be equivalently represented as almost Kahler manifolds enabled with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov-type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental Finsler functions on tangent bundles.Comment: the latex 2e variant of the manuscript accepted for JMP, 11pt, 23 page

    The Entropy of Lagrange-Finsler Spaces and Ricci Flows

    Full text link
    We formulate a statistical analogy of regular Lagrange mechanics and Finsler geometry derived from Grisha Perelman's functionals generalized for nonholonomic Ricci flows. There are elaborated explicit constructions when nonholonomically constrained flows of Riemann metrics result in Finsler like configurations, and inversely, and geometric mechanics is modelled on Riemann spaces with preferred nonholonomic frame structure.Comment: latex2e, 20 pages, v3, the variant accepted to Rep. Math. Phy

    Fedosov Quantization of Lagrange-Finsler and Hamilton-Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

    Full text link
    We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kaehler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop deformation quantization schemes for nonlinear mechanical and gravity models on Lagrange- and Hamilton-Fedosov manifolds.Comment: latex2e, 11pt, 35 pages, v3, accepted to J. Math. Phys. (2009

    Research of Gravitation in Flat Minkowski Space

    Full text link
    In this paper it is introduced and studied an alternative theory of gravitation in flat Minkowski space. Using an antisymmetric tensor, which is analogous to the tensor of electromagnetic field, a non-linear connection is introduced. It is very convenient for studying the perihelion/periastron shift, deflection of the light rays near the Sun and the frame dragging together with geodetic precession, i.e. effects where angles are involved. Although the corresponding results are obtained in rather different way, they are the same as in the General Relativity. The results about the barycenter of two bodies are also the same as in the General Relativity. Comparing the derived equations of motion for the nn-body problem with the Einstein-Infeld-Hoffmann equations, it is found that they differ from the EIH equations by Lorentz invariant terms of order c2c^{-2}.Comment: 28 page

    Sanctions

    Get PDF
    corecore