1,661 research outputs found

    On General Solutions of Einstein Equations

    Full text link
    We show how the Einstein equations with cosmological constant (and/or various types of matter field sources) can be integrated in a very general form following the anholonomic deformation method for constructing exact solutions in four and five dimensional gravity (S. Vacaru, IJGMMP 4 (2007) 1285). In this letter, we prove that such a geometric method can be used for constructing general non-Killing solutions. The key idea is to introduce an auxiliary linear connection which is also metric compatible and completely defined by the metric structure but contains some torsion terms induced nonholonomically by generic off-diagonal coefficients of metric. There are some classes of nonholonomic frames with respect to which the Einstein equations (for such an auxiliary connection) split into an integrable system of partial differential equations. We have to impose additional constraints on generating and integration functions in order to transform the auxiliary connection into the Levi-Civita one. This way, we extract general exact solutions (parametrized by generic off-diagonal metrics and depending on all coordinates) in Einstein gravity and five dimensional extensions.Comment: 15 pages, latex2e, submitted to arXiv.org on September 22, 2009, equivalent to arXiv: 0909.3949v1 [gr-qc]; an extended/modified variant published in IJTP 49 (2010) 884-913, equivalent to arXiv: 0909.3949v4 [gr-qc

    Locally Anisotropic Structures and Nonlinear Connections in Einstein and Gauge Gravity

    Get PDF
    We analyze local anisotropies induced by anholonomic frames and associated nonlinear connections in general relativity and extensions to affine Poincare and de Sitter gauge gravity and different types of Kaluza-Klein theories. We construct some new classes of cosmological solutions of gravitational field equations describing Friedmann-Robertson-Walker like universes with rotation (ellongated and flattened) ellipsoidal or torus symmetry.Comment: 37 page

    Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks

    Full text link
    We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems.Comment: 12 pages, 3 figures, 1 Supplementary Material

    Nonholonomic Ricci Flows: II. Evolution Equations and Dynamics

    Full text link
    This is the second paper in a series of works devoted to nonholonomic Ricci flows. By imposing non-integrable (nonholonomic) constraints on the Ricci flows of Riemannian metrics we can model mutual transforms of generalized Finsler-Lagrange and Riemann geometries. We verify some assertions made in the first partner paper and develop a formal scheme in which the geometric constructions with Ricci flow evolution are elaborated for canonical nonlinear and linear connection structures. This scheme is applied to a study of Hamilton's Ricci flows on nonholonomic manifolds and related Einstein spaces and Ricci solitons. The nonholonomic evolution equations are derived from Perelman's functionals which are redefined in such a form that can be adapted to the nonlinear connection structure. Next, the statistical analogy for nonholonomic Ricci flows is formulated and the corresponding thermodynamical expressions are found for compact configurations. Finally, we analyze two physical applications: the nonholonomic Ricci flows associated to evolution models for solitonic pp-wave solutions of Einstein equations, and compute the Perelman's entropy for regular Lagrange and analogous gravitational systems.Comment: v2 41 pages, latex2e, 11pt, the variant accepted by J. Math. Phys. with former section 2 eliminated, a new section 5 with applications in gravity and geometric mechanics, and modified introduction, conclusion and new reference

    Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet

    Get PDF
    The electric (E) field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have proven to be particularly sensitive to the influence of an E-field due to the interfacial origin of their anisotropy. In these systems, E-field effects have been recently applied to assist magnetization switching and control domain wall (DW) velocity. Here we report on two new applications of the E-field in a similar material : controlling DW nucleation and stopping DW propagation at the edge of the electrode

    On General Solutions for Field Equations in Einstein and Higher Dimension Gravity

    Full text link
    We prove that the Einstein equations can be solved in a very general form for arbitrary spacetime dimensions and various types of vacuum and non-vacuum cases following a geometric method of anholonomic frame deformations for constructing exact solutions in gravity. The main idea of this method is to introduce on (pseudo) Riemannian manifolds an alternative (to the Levi-Civita connection) metric compatible linear connection which is also completely defined by the same metric structure. Such a canonically distinguished connection is with nontrivial torsion which is induced by some nonholonomy frame coefficients and generic off-diagonal terms of metrics. It is possible to define certain classes of adapted frames of reference when the Einstein equations for such an alternative connection transform into a system of partial differential equations which can be integrated in very general forms. Imposing nonholonomic constraints on generalized metrics and connections and adapted frames (selecting Levi-Civita configurations), we generate exact solutions in Einstein gravity and extra dimension generalizations.Comment: latex 2e, 11pt, 40 pages; it is a generalizaton with modified title, including proofs and additional results for higher dimensional gravity of the letter v1, on 14 pages; v4, with new abstract, modified title and up-dated references is accepted by Int. J. Theor. Phy

    Jacobi stability of the vacuum in the static spherically symmetric brane world models

    Full text link
    We analyze the stability of the structure equations of the vacuum in the brane world models, by using both the linear (Lyapunov) stability analysis, and the Jacobi stability analysis, the Kosambi-Cartan-Chern (KCC) theory. In the brane world models the four dimensional effective Einstein equations acquire extra terms, called dark radiation and dark pressure, respectively, which arise from the embedding of the 3-brane in the bulk. Generally, the spherically symmetric vacuum solutions of the brane gravitational field equations, have properties quite distinct as compared to the standard black hole solutions of general relativity. We close the structure equations by assuming a simple linear equation of state for the dark pressure. In this case the vacuum is Jacobi stable only for a small range of values of the proportionality constant relating the dark pressure and the dark radiation. The unstable trajectories on the brane behave chaotically, in the sense that after a finite radial distance it would be impossible to distinguish the trajectories that were very near each other at an initial point. Hence the Jacobi stability analysis offers a powerful method for constraining the physical properties of the vacuum on the brane.Comment: 21 pages, 3 figures, accepted for publication in PR

    New Classes of Off-Diagonal Cosmological Solutions in Einstein Gravity

    Full text link
    In this work, we apply the anholonomic deformation method for constructing new classes of anisotropic cosmological solutions in Einstein gravity and/or generalizations with nonholonomic variables. There are analyzed four types of, in general, inhomogeneous metrics, defined with respect to anholonomic frames and their main geometric properties. Such spacetimes contain as particular cases certain conformal and/or frame transforms of the well known Friedman-Robertson-Walker, Bianchi, Kasner and Godel universes and define a great variety of cosmological models with generic off-diagonal metrics, local anisotropy and inhomogeneity. It is shown that certain nonholonomic gravitational configurations may mimic de Sitter like inflation scenaria and different anisotropic modifications without satisfying any classical false-vacuum equation of state. Finally, we speculate on perspectives when such off-diagonal solutions can be related to dark energy and dark matter problems in modern cosmology.Comment: latex2e, 11pt, 33 pages with table of content, a variant accepted to IJT

    Dirac Spinor Waves and Solitons in Anisotropic Taub-NUT Spaces

    Get PDF
    We apply a new general method of anholonomic frames with associated nonlinear connection structure to construct new classes of exact solutions of Einstein-Dirac equations in five dimensional (5D)gravity. Such solutions are parametrized by off-diagonal metrics in coordinate (holonomic) bases, or, equivalently, by diagonal metrics given with respect to some anholonomic frames (pentads, or funfbiends, satisfing corresponding constraint relations). We consider two possibilities of generalization of the Taub NUT metric in order to obtain vacuum solutions of 5D Einsitein equations with effective renormalization of constants having distinguished anisotropies on an angular parameter or on extra dimension coordinate. The constructions are extended to solutions describing self-consistent propagations of 3D Dirac wave packets in 5D anisotropic Taub NUT spacetimes. We show that such anisotropic configurations of spinor matter can induce gravitational 3D solitons being solutions of Kadomtsev-Petviashvili or of sine-Gordon equations.Comment: revtex, 16 pages, version 4, affiliation changed, accepted to CQ
    corecore