131 research outputs found

    Enamel matrix derivative improves gingival fibroblast cell behavior cultured on titanium surfaces.

    Get PDF
    OBJECTIVE Although an extensive amount of research has demonstrated the positive effects of an enamel matrix derivative (EMD) on soft tissue wound healing around intrabony defects, little information is available describing its effect on peri-implant soft tissues, an area that has recently gained tremendous awareness due to the increasing prevalence of peri-implantitis. The aim of the present study was to assess the role of EMD when gingival fibroblasts were cultured on titanium surface with different surface topographies. METHODS Human primary gingival fibroblasts were cultured on pickled (PT) and sand-blasted with large grit followed by acid etching (SLA) surfaces and assessed for cell adhesion at 2, 4, and 8 h, cell morphology at 2, 4, 8, and 24 h as well as cell proliferation at 1, 3, and 5 days post-seeding. Furthermore, genes encoding collagen 1a1, vascular endothelial growth factor-A (VEGF-A), and fibronectin were assessed by real-time PCR. Human gingival fibroblasts were also quantified for their ability to synthesize a collagen matrix on the various titanium surfaces with and without EMD by immunofluorescence staining. RESULTS The results from the present study demonstrate that EMD significantly increased cell spreading at 2, 4, 8, and 24 h on PT surfaces and 4, 8, and 24 h on SLA surfaces. Furthermore, proliferation at 5 days on PT surfaces and 3 and 5 days on SLA surfaces was also increased for groups containing EMD. Real-time PCR results demonstrated that the culture of gingival fibroblasts with EMD significantly increased extracellular matrix synthesis of collagen 1 as well as improved mRNA levels of VEGF-A and fibronectin. Collagen1 immuno-fluorescent staining revealed a significantly higher area of staining for cells seeded on PT + EMD at 7 and 14 days and 14 days for SLA + EMD when compared to control samples. CONCLUSION The results from the present study favor the use of EMD for colonization of gingival fibroblasts on titanium surfaces by increasing cell growth, spreading, and synthesis of an extracellular matrix. The improvements were primarily irrespective of surface topography. Future animal and human studies are necessary to fully characterize the beneficial effects of incorporating EMD during soft tissue regeneration of implant protocols. CLINICAL RELEVANCE The use of EMD may speed up the quality of soft tissue integration around dental implants by facilitating gingival cell attachment, proliferation, and matrix synthesis of collagen 1

    Bone grafting material in combination with Osteogain for bone repair: a rat histomorphometric study.

    Get PDF
    OBJECTIVES Enamel matrix derivative (EMD) has been successfully used for the regeneration of periodontal tissues including new cementum, periodontal ligament, and alveolar bone. Combination of EMD with bone grafting materials has however generated variable clinical results. Recently, we have demonstrated that a new formulation of EMD in a liquid carrier system (Osteogain®) has improved physicochemical properties for the adsorption of EMD to a bone grafting material. The aim of the present study was to investigate the regenerative potential of Osteogain®, in combination with a bone graft, on new bone formation in a rat femur defect model. MATERIALS AND METHODS Fifty-four critically sized femur defects (3 mm in diameter) were created bilaterally in 27 rats and treated following the group allocation: (1) drilled unfilled control, (2) a natural bone mineral (NBM), and (3) NBM + Osteogain®. All defects were histologically analyzed at 2, 4, and 8 weeks after surgical intervention. Micro-CT analysis, hematoxylin and eosin (H&E) staining, and Safranin O staining were performed to quantify new bone formation. RESULTS Significantly more new bone formation was observed in defects treated with NBM + Osteogain® at both 4 and 8 weeks when compared to NBM alone and the control unfilled defects (P < 0.05). Histologically, the formation of more mature mineralized bone with the presence of osteocytes were found more commonly in defects treated with Osteogain® + NBM at 8 weeks post-healing when compared to NBM alone. CONCLUSIONS The present study demonstrate that Osteogain® in combination with a bone grafting material improves the speed and quality of new bone formation in rat osseous defects. CLINICAL RELEVANCE Future clinical research are now warranted to fully characterize the benefits of Osteogain®, a new formulation of enamel matrix proteins delivered in liquid formation when used in combination with a bone grafting material

    Gene array of PDL cells exposed to Osteogain in combination with a bone grafting material.

    Get PDF
    OBJECTIVES The aim of the present study was to investigate the effects of Osteogain, a new formulation of enamel matrix derivative (EMD) in combination with a grafting material on a wide variety of genes for cytokines, transcription factors and extracellular matrix proteins involved in osteoblast differentiation. MATERIALS AND METHODS Primary human periodontal ligament (PDL) cells were seeded on natural bone mineral (NBM) particles coated with Osteogain for 24 h and analyzed for regulated gene expression using a human osteogenesis gene super-array kit. Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation as well as gene products representing extracellular matrix molecules, transcription factors and cell adhesion molecules. RESULTS Osteogain significantly upregulated the expression of over 20 of the 100 genes examined including bone morphogenetic protein 2 (BMP2), TGFβ1, fibroblast growth factor (FGF), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) as well as some of their associated receptors. Osteogain also promoted gene expression of a number of osteoblast differentiation markers including collagen1α2 and alkaline phosphatase as well as cell adhesion molecules including fibronectin and a variety of integrin binding proteins. Interestingly, Osteogain promoted calcitonin receptor 55-fold and also promoted annexin A5 gene expression over 12-fold. CONCLUSION The present study demonstrates that Osteogain is capable of either upregulating or downregulating the expression of a wide variety of genes including those for growth factors and cytokines when combined with a bone grafting material. CLINICAL RELEVANCE The results from the present study demonstrate the large and potent effect of addition of Osteogain in combination to a bone grafting material over a wide variety of genes supporting osteogenesis

    Comparative release of growth factors from PRP, PRF, and advanced-PRF

    Get PDF
    OBJECTIVES The use of platelet concentrates has gained increasing awareness in recent years for regenerative procedures in modern dentistry. The aim of the present study was to compare growth factor release over time from platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and a modernized protocol for PRF, advanced-PRF (A-PRF). MATERIALS AND METHODS Eighteen blood samples were collected from six donors (3 samples each for PRP, PRF, and A-PRF). Following preparation, samples were incubated in a plate shaker and assessed for growth factor release at 15 min, 60 min, 8 h, 1 day, 3 days, and 10 days. Thereafter, growth factor release of PDGF-AA, PDGF-AB, PDGF-BB, TGFB1, VEGF, EGF, and IGF was quantified using ELISA. RESULTS The highest reported growth factor released from platelet concentrates was PDGF-AA followed by PDGF-BB, TGFB1, VEGF, and PDGF-AB. In general, following 15-60 min incubation, PRP released significantly higher growth factors when compared to PRF and A-PRF. At later time points up to 10 days, it was routinely found that A-PRF released the highest total growth factors. Furthermore, A-PRF released significantly higher total protein accumulated over a 10-day period when compared to PRP or PRF. CONCLUSION The results from the present study indicate that the various platelet concentrates have quite different release kinetics. The advantage of PRP is the release of significantly higher proteins at earlier time points whereas PRF displayed a continual and steady release of growth factors over a 10-day period. Furthermore, in general, it was observed that the new formulation of PRF (A-PRF) released significantly higher total quantities of growth factors when compared to traditional PRF. CLINICAL RELEVANCE Based on these findings, PRP can be recommended for fast delivery of growth factors whereas A-PRF is better-suited for long-term release

    Bone scaffolds loaded with siRNA-Semaphorin4d for the treatment of osteoporosis related bone defects.

    Get PDF
    Osteoporosis is a prominent disorder affecting over 200 million people worldwide. Recently, semaphorins have been implicated in the cell-cell communication between osteoclasts and osteoblasts and have been associated with the progression of osteoporosis. Previously, we demonstrated that knockdown of semaphorin4d (Sema4d) using siRNA delivered with a bone-targeting system prevented bone loss in an osteoporotic animal model. Here, we used this bone-specific technology containing siRNA-Sema4d and fabricated a PLLA scaffold capable of enhancing bone repair following fracture. We investigated the ability of the implant to release siRNA-Sema4d into the surrounding tissues over time and to influence new bone formation in a 3 mm femur osteoporotic defect model in ovariectomized rats. Delivery of the bone-targeting system released from PLLA scaffolds began 2 hours post-implantation, peaked at 1 day, and was sustained over a 21 day period. μCT analysis demonstrated a significantly higher bone volume/total volume bone mineral density and number of osteoblasts in the rats that were transplanted with scaffolds loaded with siRNA-Sema4d. These results confirm the specific role of Sema4d in bone remodeling and demonstrate that significant increases in the speed and quality of new bone formation occur when siRNA-Sema4d is delivered via a PLLA scaffold

    In vitro effects of 0 to 120 Grays of irradiation on bone viability and release of growth factors.

    Get PDF
    BACKGROUND High dose radiation therapy is commonly used in maxillofacial surgeries to treat a number of head and neck tumors. Despite its widespread use, little information is available regarding the effects of irradiation on bone cell viability and release of growth factors following dose-dependent irradiation. METHODS Bone samples were collected from porcine mandibular cortical bone and irradiated at doses of 0, 7.5, 15, 30, 60 and 120 Grays. Thereafter, cell viability was quantified, and the release of growth factors including TGFβ1, BMP2, VEGF, IL1β and RANKL were investigated over time. RESULTS It was observed that at only 7.5Gy of irradiation, over 85 % of cells were non-vital and by 60 Gy, all cells underwent apoptosis. Furthermore, over a 7-fold decrease in VEGF and a 2-fold decrease in TGFβ1 were observed following irradiation at all tested doses. Little change was observed for BMP2 and IL1β whereas RANKL was significantly increased for all irradiated samples. CONCLUSIONS These results demonstrate the pronounced effects of irradiation on bone-cell vitality and subsequent release of growth factors. Interestingly, the largest observed change in gene expression was the 7-fold decrease in VEGF protein following irradiation. Future research aimed at improving our understanding of bone following irradiation is necessary to further improve future clinical treatments

    In vitro characterization of an osteoinductive biphasic calcium phosphate in combination with recombinant BMP2.

    Get PDF
    BACKGROUND The repair of alveolar bone defects with growth factors and bone grafting materials has played a pivotal role in modern dentistry. Recombinant human bone morphogenetic protein-2 (rhBMP2), an osteoinductive growth factor capable of cell recruitment and differentiation towards the osteoblast lineage, has been utilized in combination with various biomaterials to further enhance new bone formation. Recently, a group of novel biphasic calcium phosphate (BCP) bone grafting materials have been demonstrated to possess osteoinductive properties by demonstrating signs of ectopic bone formation. The aim of the present study was to study the effects of rhBMP2 in combination with osteoinductive BCP bone grafts on osteoblast cell behaviour. METHODS MC3T3-E1 pre-osteoblasts were seeded on 1) control tissue culture plastic, 2) 10 mg of BCP alone, 3) 100 ng rhBMP2, and 4) 100 ng rhBMP2+ 10 mg of BCP and analyzed for cell recruitment via a Transwell chamber, proliferation via an MTS assay and differentiation as assessed by alkaline phosphatase (ALP) activity, alizarin red staining and real-time PCR for osteoblast differentiation markers including Runx2, collagen1, ALP, and osteocalcin (OCN). RESULTS rhBMP2 was able to significantly upregulate cell recruitment whereas the addition of BCP as well as BCP alone had no additional ability to improve osteoblast recruitment. Both BCP and rhBMP2 were able to significantly increase cell proliferation at 3 and 5 days post seeding and cell number was further enhanced when rhBMP2 was combined with BCP. In addition, the combination of rhBMP2 with BCP significantly improved ALP activity at 7 and 14 days post seeding, alizarin red staining at 14 days, and mRNA levels of Runx2, ALP and osteocalcin when compared to cells seeded with rhBMP2 alone or BCP alone. CONCLUSIONS The results from the present study demonstrate that 1) the osteoinductive potential of BCP bone particles is equally as osteopromotive as rhBMP2 on in vitro osteoblast differentiation and 2) BCP particles in combination with rhBMP2 is able to further increase the osteopromotive differentiation of osteoblasts in vitro when compared to either rhBMP2 alone or BCP alone. Future animal testing is further required to investigate this combination approach on new bone formation

    Bone conditioned media (BCM) improves osteoblast adhesion and differentiation on collagen barrier membranes.

    Get PDF
    BACKGROUND The use of autogenous bone chips during guided bone regeneration procedures has remained the gold standard for bone grafting due to its excellent combination of osteoconduction, osteoinduction and osteogenesis. Recent protocols established by our group have characterized specific growth factors and cytokines released from autogenous bone that have the potential to be harvested and isolated into bone conditioned media (BCM). Due to the advantageous osteo-promotive properties of BCM, the aims of the present study was to pre-coat collagen barrier membranes with BCM and investigate its effect on osteoblast adhesion, proliferation and differentiation for possible future clinical use. METHODS Scanning electron microscopy (SEM) was first used to qualitative assess BCM protein accumulation on the surface of collagen membranes. Thereafter, undifferentiated mouse ST2 stromal bone marrow cells were seeded onto BioGide porcine derived collagen barrier membranes (control) or barrier membranes pre-coated with BCM (test group). Control and BCM samples were compared for cell adhesion at 8 h, cell proliferation at 1, 3 and 5 days and real-time PCR at 5 days for osteoblast differentiation markers including Runx2, alkaline phosphatase (ALP), osteocalcin (OCN) and bone sialoprotein (BSP). Mineralization was further assessed with alizarin red staining at 14 days post seeding. RESULTS SEM images demonstrated evidence of accumulated proteins found on the surface of collagen membranes following coating with BCM. Analysis of total cell numbers revealed that the additional pre-coating with BCM markedly increased cell attachment over 4 fold when compared to cells seeded on barrier membranes alone. No significant difference could be observed for cell proliferation at all time points. BCM significantly increased mRNA levels of osteoblast differentiation markers including ALP, OCN and BSP at 5 days post seeding. Furthermore, barrier membranes pre-coated with BCM demonstrated a 5-fold increase in alizarin red staining at 14 days. CONCLUSION The results from the present study suggest that the osteoconductive properties of porcine-derived barrier membranes could be further improved by BCM by significantly increasing cell attachment, differentiation and mineralization of osteoblasts in vitro. Future animal testing is required to fully characterize the additional benefits of BCM for guided bone regeneration

    Mutational processes molding the genomes of 21 breast cancers.

    Get PDF
    All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed

    Mutational processes molding the genomes of 21 breast cancers

    Get PDF
    All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed
    • …
    corecore