18 research outputs found

    All-dielectric reciprocal bianisotropic nanoparticles

    Full text link
    The study of high-index dielectric nanoparticles currently attracts a lot of attention. They do not suffer from absorption but promise to provide control on the properties of light comparable to plasmonic nanoparticles. To further advance the field, it is important to identify versatile dielectric nanoparticles with unconventional properties. Here, we show that breaking the symmetry of an all-dielectric nanoparticle leads to a geometrically tunable magneto-electric coupling, i.e. an omega-type bianisotropy. The suggested nanoparticle exhibits different backscatterings and, as an interesting consequence, different optical scattering forces for opposite illumination directions. An array of such nanoparticles provides different reflection phases when illuminated from opposite directions. With a proper geometrical tuning, this bianisotropic nanoparticle is capable of providing a 2Ď€2\pi phase change in the reflection spectrum while possessing a rather large and constant amplitude. This allows creating reflectarrays with near-perfect transmission out of the resonance band due to the absence of an usually employed metallic screen.Comment: 7 pages, 6 figure

    Controlling surface waves with temporal discontinuities of metasurfaces

    Get PDF
    Static reactive metasurfaces allow excitation and propagation of surface waves. In this paper, we theoretically elucidate how surface-wave propagation along a reactive boundary is affected by temporal discontinuities of effective parameters characterizing the boundary. First, we show that by switching the value of the surface reactance, the velocity of surface waves is fully controlled, and the power of reflected and transmitted surface waves can be amplified. Second, we indicate that when a boundary supporting waves with transverse-electric polarization is switched to the one allowing only transverse-magnetic polarization, the propagating surface wave is “frozen” and converted to a static magnetic-field distribution. Moreover, efficiently, these fields can be “melted”, restoring propagating surface waves when the boundary is switched back to the initial state. Finally, we demonstrate that temporal jumps of the boundary reactance couple free-space propagating waves to the surface wave, in an analogy to a spatial prism. All these intriguing phenomena enabled by temporal discontinuities of effective properties of reactive metasurfaces open up interesting possibilities for the generation and control of surface waves

    Metasurface-based realization of photonic time crystals

    Get PDF

    Metasurface-Based Realization of Photonic Time Crystals

    Full text link
    Photonic time crystals are artificial materials whose electromagnetic properties are uniform in space but periodically vary in time. The synthesis of such materials and experimental observation of their physics remain very challenging due to the stringent requirement for uniform modulation of material properties in volumetric samples. In this work, we extend the concept of photonic time crystals to two-dimensional artificial structures -- metasurfaces. We demonstrate that time-varying metasurfaces not only preserve key physical properties of volumetric photonic time crystals despite their simpler topology but also host common momentum bandgaps shared by both surface and free-space electromagnetic waves. Based on a microwave metasurface design, we experimentally confirmed the exponential wave amplification inside a momentum bandgap as well as the possibility to probe bandgap physics by external (free-space) excitations. The proposed metasurface serves as a straightforward material platform for realizing emerging photonic space-time crystals and as a realistic system for the amplification of surface-wave signals in future wireless communications.Comment: 21 pages, 3 figure

    Controlling surface waves with temporal discontinuities of metasurfaces

    No full text
    Funding Information: Research funding: This work was supported by the Academy of Finland under Grant No. 330260. Publisher Copyright: © 2023 the author(s), published by De Gruyter, Berlin/Boston 2023.Static reactive metasurfaces allow excitation and propagation of surface waves. In this paper, we theoretically elucidate how surface-wave propagation along a reactive boundary is affected by temporal discontinuities of effective parameters characterizing the boundary. First, we show that by switching the value of the surface reactance, the velocity of surface waves is fully controlled, and the power of reflected and transmitted surface waves can be amplified. Second, we indicate that when a boundary supporting waves with transverse-electric polarization is switched to the one allowing only transverse-magnetic polarization, the propagating surface wave is "frozen"and converted to a static magnetic-field distribution. Moreover, efficiently, these fields can be "melted", restoring propagating surface waves when the boundary is switched back to the initial state. Finally, we demonstrate that temporal jumps of the boundary reactance couple free-space propagating waves to the surface wave, in an analogy to a spatial prism. All these intriguing phenomena enabled by temporal discontinuities of effective properties of reactive metasurfaces open up interesting possibilities for the generation and control of surface waves.Peer reviewe

    Spin-dependent phenomena at chiral temporal interfaces

    No full text
    Temporally varying electromagnetic media have been extensively investigated recently to unveil new means for controlling light. However, spin-dependent phenomena in such media have not been explored thoroughly. Here, we reveal the existence of spin-dependent phenomena at a temporal interface between chiral and dielectric media. In particular, we show theoretically and numerically that due to the material discontinuity in time, linearly polarized light is split into forward-propagating right-handed and left-handed circularly polarized waves having different angular frequencies and the same phase velocities. This salient effect allows complete temporal separation of the two spin states of light with high efficiency. In addition, a phenomenon of spin-dependent gain/loss is observed. Furthermore, we show that when the dielectric medium is switched back to the original chiral medium, the right- and left-handed circularly polarized light waves (with different angular frequencies) merge to form a linearly polarized wave. Our findings extend spin-dependent interactions of light from space to space-time
    corecore