5 research outputs found

    The carvacrol ameliorates acute pancreatitis-induced liver injury via antioxidant response

    Get PDF
    Acute pancreatitis (AP) may cause significant persistent multi-organ dysfunction. Carvacrol (CAR) possesses a variety of biological and pharmacological properties. The aim of the present study was to analyze the hepatic protection of CAR on AP induced by cerulein and to explore the underlying mechanism using in vivo studies. The rats were randomized into groups to receive (1) no therapy; (2) 50 A mu g/kg cerulein at 1-h intervals by four intraperitoneal injection (i.p.); (3) 50, 100 and 200 mg/kg CAR by one i.p.; and (4) cerulein + CAR after 2 h of cerulein injection. 12 h later, serum was provided to assess the blood AST, ALT and LDH values. Also, liver tissues were obtained for histological and biochemical measurements. Liver oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as MDA and changes in tissue antioxidant enzyme levels, SOD, CAT and GSH-Px. Histopathological examination was performed using scoring systems. Oxidative damage to DNA was quantitated in studied tissues of experimental animals by measuring the increase in 8-hydroxydeoxyguanosine (8-OHdG) formations. We found that the increasing doses of CAR decreased pancreatitis-induced MDA and 8-OH-dG levels. Moreover, the liver SOD, CAT and GSH-Px activities in the AP + CAR group were higher than that of the rats in the AP group. In the treatment groups, AST, ALT and LDH were reduced. Besides, necrosis, coagulation and inflammation in the liver were alleviated (p < 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to hepatic dysfunction

    Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury

    No full text
    Cisplatin-based chemotherapy is responsible for a large number of renal failures, and it is still associated with high rates of mortality today. Oleuropein (OLE) presents a plethora of pharmacological beneficial properties. In this study we investigated whether OLE could provide sufficient protection against cisplatin-induced nephrotoxicity. With this aim, Sprague-Dawley rats were divided into eight groups: control; 7 mg/kg/d cisplatin, 50 mg/kg, 100 mg/kg, and 200 mg/kg OLE; and treatment with OLE for 3 days starting at 24 hours following cisplatin injection. After exposure to the chemotherapy agent and OLE, oxidative DNA damage was quantitated in the renal tissue of experimental animals by measuring the amount of 8-hydroxy-2′-deoxyguanosine (8-OHdG) adducts. Malondialdehyde (MDA) level, total oxidative stress (TOS), and total antioxidant status (TAS) were assessed to determine the oxidative injury in kidney cells. The histology of the kidney was examined using four different staining methods: hematoxylin-eosin (H&E), periodic acid Schiff (PAS), Masson trichrome, and amyloid. In addition, the blood urea nitrogen (BUN), uric acid (UA), and creatinine (CRE) levels were established. Our experimental data showed that tissue 8-OHdG levels were significantly higher in the cisplatin group when compared to the control group. The glomerular cells were sensitive to cisplatin as tubular cells. In addition, treatment with cisplatin elevated the levels of BUN, UA, CRE, and TOS, but lowered the level of TAS compared to the control group. The OLE therapy modulated oxidative stress in order to restore normal kidney function and reduced the formation of 8-OHdG induced by cisplatin. Furthermore, the OLE treatment significantly reduced pathological findings in renal tissue. We demonstrate for the first time that OLE presents significant cytoprotective properties against cisplatin-induced genotoxicity by restoring the antioxidant system of the renal tissue. According to our findings, OLE is a promising novel natural source for the prevention of serious kidney damage in current chemotherapies
    corecore