5 research outputs found

    Power System Stability Assessment with Supervised Machine Learning

    Get PDF
    Power system stability assessment has become an important area of research due to the increased penetration of photovoltaics (PV) in modern power systems. This work explores how supervised machine learning can be used to assess power system stability for the Western Electricity Coordinating Council (WECC) service region as part of the Data-driven Security Assessment for the Multi-Timescale Integrated Dynamics and Scheduling for Solar (MIDAS) project. Data-driven methods offer to improve power flow scheduling through machine learning prediction, enabling better energy resource management and reducing demand on real-time time-domain simulations. Frequency, transient, and small signal stability datasets were created using the 240-bus and reduced 18-bus models of the WECC system. Supervised machine learning was performed to predict the system’s frequency nadir, critical clearing time, and damping ratio, respectively. In addition to varying algorithm hyperparameters, experiments were performed to evaluate model prediction performance through various data entry methods, data allocation methods during model development, and preprocessing techniques. This work also begins analysis of Electric Reliability Council of Texas (ERCOT) grid behavior during extreme frequency events, and provides suggestions for potential supervised machine learning applications in the future. Timestamped frequency event data is collected every 100 milliseconds from Frequency Disturbance Recorders (FDRs) installed in the ERCOT service territory by the Power Information Technology Laboratory at the University of Tennessee, Knoxville. The data is filtered, and the maximum Rate of Change of Frequency (ROCOF) is calculated using the windowing technique. Trends in data are evaluated, and ROCOF prediction performance is verified against another ROCOF calculation technique

    Adding power of artificial intelligence to situational awareness of large interconnections dominated by inverter‐based resources

    Get PDF
    Large-scale power systems exhibit more complex dynamics due to the increasing integration of inverter-based resources (IBRs). Therefore, there is an urgent need to enhance the situational awareness capability for better monitoring and control of power grids dominated by IBRs. As a pioneering Wide-Area Measurement System, FNET/GridEye has developed and implemented various advanced applications based on the collected synchrophasor measurements to enhance the situational awareness capability of large-scale power grids. This study provides an overview of the latest progress of FNET/GridEye. The sensors, communication, and data servers are upgraded to handle ultra-high density synchrophasor and point-on-wave data to monitor system dynamics with more details. More importantly, several artificial intelligence (AI)-based advanced applications are introduced, including AI-based inertia estimation, AI-based disturbance size and location estimation, AI-based system stability assessment, and AI-based data authentication

    AI-Based Faster-Than-Real-Time Stability Assessment of Large Power Systems with Applications on WECC System

    No full text
    Achieving clean energy goals will require significant advances in regard to addressing the computational needs for next-generation renewable-dominated power grids. One critical obstacle that lies in the way of transitioning today’s power grid to a renewable-dominated power grid is the lack of a faster-than-real-time stability assessment technology for operating a fast-changing power grid. This paper proposes an artificial intelligence (AI) -based method that predicts the system’s stability margin information (e.g., the frequency nadir in the frequency stability assessment and the critical clearing time (CCT) value in the transient stability assessment) directly from the system operating conditions without performing the conventional time-consuming time-domain simulations over detailed dynamic models. Since the AI method shifts the majority of the computational burden to offline training, the online evaluation is extremely fast. This paper has tested the AI-based stability assessment method using multiple dispatch cases that are converted and tuned from actual dispatch cases of the Western Electricity Coordinating Council (WECC) system model with more than 20,000 buses. The results show that the AI-based method could accurately predict the stability margin of such a large power system in less than 0.2 milliseconds using the offline-trained AI agent. Therefore, the proposed method has great potential to achieve faster-than-real-time stability assessment for practical large power systems while preserving sufficient accuracy

    Deep Learning Based Frequency Stability Assessment in Power Grid with High Renewables

    No full text
    Frequency stability assessment is one critical aspect of power system security assessment. Traditional N-1 screening method is based on the simulations of a few typical daily and seasonal operation scenarios. However, the increasing integration of inverter-based renewables and the retirement of conventional synchronous generators result in decreasing system inertia and growing complexity of system operating conditions. Selecting a few typical operation scenarios cannot cover all operating conditions, and the time-domain simulation of all operation conditions requires tremendous time. This paper proposes a more efficient frequency stability assessment method based on deep learning. The affinity propagation clustering algorithm is used to divide the dataset into different clusters, so the selected dataset for training can cover the diversified operating conditions as much as possible. Also, feature normalization is applied to both the training dataset and testing dataset in order to remove any unnecessary bias. Especially, trained model based on full dataset normalization has bounded error in the prediction. The case study on the reduced 240-bus WECC system demonstrates that the proposed method can predict accurate frequency nadir with limited training dataset. The deep learning model using the revised feature normalization can predict more accurate frequency nadir than that using the traditional feature normalization and has very small maximum prediction error
    corecore