30 research outputs found

    Central Role of Dendritic Cells in Pulmonary Arterial Hypertension in Human and Mice.

    Get PDF
    The pathogenesis of idiopathic pulmonary arterial hypertension (IPAH) is not fully understood, but evidence is accumulating that immune dysfunction plays a significant role. We previously reported that 31-week-old Tnfaip3DNGR1-KO mice develop pulmonary hypertension (PH) symptoms. These mice harbor a targeted deletion of the TNFα-induced protein-3 (Tnfaip3) gene, encoding the NF-κB regulatory protein A20, specifically in type I conventional dendritic cells (cDC1s). Here, we studied the involvement of dendritic cells (DCs) in PH in more detail. We found various immune cells, including DCs, in the hearts of Tnfaip3DNGR1-KO mice, particularly in the right ventricle (RV). Secondly, in young Tnfaip3DNGR1-KO mice, innate immune activation through airway exposure to toll-like receptor ligands essentially did not result in elevated RV pressures, although we did observe significant RV hypertrophy. Thirdly, PH symptoms in Tnfaip3DNGR1-KO mice were not enhanced by concomitant mutation of bone morphogenetic protein receptor type 2 (Bmpr2), which is the most affected gene in PAH patients. Finally, in human IPAH lung tissue we found co-localization of DCs and CD8+ T cells, representing the main cell type activated by cDC1s. Taken together, these findings support a unique role of cDC1s in PAH pathogenesis, independent of general immune activation or a mutation in the Bmpr2 gene

    Central role of dendritic cells in pulmonary arterial hypertension in human and mice

    Get PDF
    The pathogenesis of idiopathic pulmonary arterial hypertension (IPAH) is not fully understood, but evidence is accumulating that immune dysfunction plays a significant role. We previously reported that 31-week-old Tnfaip3(DNGR1-KO) mice develop pulmonary hypertension (PH) symptoms. These mice harbor a targeted deletion of the TNF alpha-induced protein-3 (Tnfaip3) gene, encoding the NF-kappa B regulatory protein A20, specifically in type I conventional dendritic cells (cDC1s). Here, we studied the involvement of dendritic cells (DCs) in PH in more detail. We found various immune cells, including DCs, in the hearts of Tnfaip3(DNGR1-KO) mice, particularly in the right ventricle (RV). Secondly, in young Tnfaip3(DNGR1-KO) mice, innate immune activation through airway exposure to toll-like receptor ligands essentially did not result in elevated RV pressures, although we did observe significant RV hypertrophy. Thirdly, PH symptoms in Tnfaip3(DNGR1-KO) mice were not enhanced by concomitant mutation of bone morphogenetic protein receptor type 2 (Bmpr2), which is the most affected gene in PAH patients. Finally, in human IPAH lung tissue we found co-localization of DCs and CD8+ T cells, representing the main cell type activated by cDC1s. Taken together, these findings support a unique role of cDC1s in PAH pathogenesis, independent of general immune activation or a mutation in the Bmpr2 gene

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Regulation of the immunomodulatory cytokine IL-10 by Twist2

    No full text
    THESIS 10518Dysregulation of cytokines can lead to infectious and inflammatory diseases. The anti-inflammatory cytokine IL-10 is known to control pro-inflammatory cytokines such as TNF-a, IL-6 and IL-12. The regulation of IL-10 is complex and it has been shown previously that the human tumour suppressor PDCD4 is a negative regulator of IL-10 production. Following LPS stimulation, PDCD4 acts as a molecular switch whereby its degradation results in increased IL-10 production. In this study, I have examined in detail the regulation of PDCD4 in LPS- treated macrophages. I have shown that the mTOR pathway and proteosomal degradation are involved in LPS- induced PDCD4 degradation using rapamycin, an mTOR inhibitor, or the proteosomal inhibitors MG132, both of which block this response. Inhibition of PDCD4 degradation by rapamycin also decreased IL-10 and c-Maf expression, a transcription factor critical for IL-10 induction. I have alson found evidence through immunoprecipitation, of interaction between PDCD4 and Twist2. Through chromatin imunoprecipitation (ChIP) and oligonucleotide pull down assays, I have demonstrated a new regulatory role for PDCD4 and Twist2 in LPS-induced IL10 production by showing increased binding of Twist2 to the c-Maf promoter. The PDCD4-Twist2 complex is inhibitory for LPS-induced c-Maf and IL-10 expression. A new mechanism in the complex regulation of the anti-inflammatory cytokine IL-10 has therefore been discovered

    Loss of immune homeostasis in patients with idiopathic pulmonary arterial hypertension

    Get PDF
    Introduction Autoreactivity against pulmonary vascular structures is thought to be involved in idiopathic pulmonary arterial hypertension (IPAH), but the underlying mechanisms remain poorly understood. We hypothesised that aberrant B-cell activation contributes to IPAH aetiology. Methods Mice with enhanced B-cell activation due to B-cell-specific overexpression of the B-cell receptor (BCR) signalling molecule Bruton's tyrosine kinase (BTK) were subjected to lung injury and examined for several pulmonary hypertension (PH) indices. Peripheral blood lymphocytes from patients with IPAH (n=13), connective tissue disease-associated PAH (CTD-PAH, n=9), congenital heart disease PAH (n=7), interstitial lung disease associated PH (n=17) and healthy controls (n=19) were characterised by 14-colour flow cytometry. Results Following pulmonary injury, BTK-overexpressing mice showed prolonged activation of B cells and CXCR5 + follicular T-helper (Tfh) cells, as well as features of PH development. Patients with CTD-PAH and CHD-PAH displayed reduced proportions of circulating non-switched-memory B cells (p=0.03, p=0.02, respectively). Interestingly, we observed increased BTK protein expression in naive (p=0.007) and memory B-cell subsets of patients with IPAH and CTD-PAH. BTK was particularly high in patients with IPAH with circulating autoantibodies (p=0.045). IPAH patients had low frequencies of circulating CXCR5 + Tfh cells (p=0.005). Hereby, the increased BTK protein expression in B cells was associated with high proportions of Tfh17 (p=0.018) and Tfh17.1 (p=0.007) cells within the circulating Tfh population. Conclusions Our study shows that pulmonary injury in combination with enhanced B-cell activation is sufficient to induce PH symptoms in mice. In parallel, immune homeostasis in patients with IPAH is compromised, as evidenced by increased BCR signalling and cTfh17 polarisation, indicating that adaptive immune activation contributes to IPAH disease induction or progression

    Evidence for a Role of CCR6+ T Cells in Chronic Thromboembolic Pulmonary Hypertension

    Get PDF
    Introduction: Previous studies have shown an increase of T cells and chemokines in vascular lesions of patients with chronic thromboembolic pulmonary hypertension (CTEPH). However, detailed characterization of these T cells is still lacking, nor have treatment effects been evaluated. Methods: We included 41 treatment-naive CTEPH patients at diagnosis, 22 patients at 1-year follow-up, and 17 healthy controls (HCs). Peripheral blood T cells were characterized by flow cytometry for subset distribution, cytokine expression and activation marker profile. We used multiplex immunofluorescence to identify CCR6+ T cells in endarterectomy tissue from 25 patients. Results: At diagnosis, proportions of CCR6+ CD4+ T cells were increased in CTEPH patients compared with HCs. Patients displayed a significantly reduced production capacity of several cytokines including TNFα, IFNγ, GM-CSF and IL-4 in CD4+ T cells, and TNFα and IFNγ in CD8+ T cells. CD4+ and CD8+ T cells showed increased expression of the immune checkpoint protein CTLA4. Multivariate analysis separated CTEPH patients from HCs, based on CCR6 and CTLA4 expression. At 1-year follow-up, proportions of CCR6+CD4+ T cells were further increased, IFNγ and IL-17 production capacity of CD4+ T cells was restored. In nearly all vascular lesions we found substantial numbers of CCR6+ T cells. Conclusion: The observed increase of CCR6+ T cells and modulation of the IFNγ and IL-17 production capacity of circulating CD4+ T cells at diagnosis and 1-year follow-up – together with the presence of CCR6+ T cells in vascular lesions - support the involvement of the Th17-associated CCR6+ T cell subset in CTEPH

    Peripheral Blood T Cells of Patients with IPAH Have a Reduced Cytokine-Producing Capacity

    Get PDF
    Pulmonary arterial hypertension (PAH) is rare disease that is categorized as idiopathic (IPAH) when no underlying cause can be identified. Lungs of most patients with IPAH contain increased numbers of T cells and dendritic cells (DCs), suggesting involvement of the immune system in its pathophysiology. However, our knowledge on circulating immune cells in IPAH is rather limited. We used flow cytometry to characterize peripheral blood DCs and T cells in treatment-naive IPAH patients, compared with connective-tissue disease-PAH (CTD-PAH) patients and healthy controls (HCs). At diagnosis, T-helper (Th) cells of IPAH patients were less capable of producing TNFα, IFNγ, IL-4 and IL-17 compared to HCs. IPAH patients showed a decreased frequency of Th2 cells and significantly enhanced expression of the CTLA4 checkpoint molecule in naive CD4+ T cells and both naive and memory CD8+ T cells. Frequencies and surface marker expression of circulating DCs and monocytes were essentially comparable between IPAH patients and HCs. Principal component analysis (PCA) separated IPAH patients—but not CTD-PAH patients—from HCs, based on T-cell cytokine profiles. At 1-year follow-up, the frequencies of IL-17+ production by memory CD4+ T cells were increased in IPAH patients and accompanied by increased proportions of Th17 and Tc17 cells, as well as decreased CTLA4 expression. Treatment-naive IPAH patients displayed a unique T-cell phenotype that was different from CTD-PAH patients and was characterized by reduced cytokine-producing capacity. These findings point to involvement of adaptive immune responses in IPAH, which may have an implication for the development of therapeutic interventions

    Correction: Vincristine-Induced Peripheral Neuropathy in Pediatric Oncology: A Randomized Controlled Trial Comparing Push Injections with One-Hour Infusions (The VINCA Trial) (Cancers, (2020), 12, (3745), 10.3390/cancers12123745)

    No full text
    Error in Table In the original publication, there was a mistake in Table 1 as published [1]. The number of patients with death was swapped between the one-hour administration group and the push administration group. The corrected Table 1 appears below. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated
    corecore