18 research outputs found

    Mitochondrion at the Crossroad Between Nutrients and Epigenome.

    Get PDF
    Epigenetic profile is the link between the regulation of nuclear gene expression and the environment. The most important factors capable of significantly affecting the cellular environment are the amount and quality of nutrients available. Mitochondria are both involved in the production of some of the molecules capable of directly affecting the epigenome and have a critical role in the conversion of nutrients into usable energy. Carbohydrate and fats are converted into ATP, acetyl-CoA, SAM, and NADH. These high-energy substrates are, in turn, capable of driving the epigenetic profile. We describe substances capable of affecting this mechanism. On the other hand, nutritional interventions capable of reducing calories or significantly impairing the normal Acetyl-CoA production or the SAM-SAH ratio also impact chromatin methylation and histone modification, suggesting a critical role of mitochondria on nutrient-dependent epigenetic profile

    Quantification and viability analyses of Pseudokirchneriella subcapitata algal cells using image-based cytometry

    Get PDF
    This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1×105 and 8×106 cells mL1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2=0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.FCT Strategic Project PEst- OE/EQB/LA0023/2013. The post-doctoral grant from FCT (SFRH/BPD/72816/2010)

    Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii

    Get PDF
    Metal contamination of the environment is frequently associated to the presence of two or more metals. This work aimed to study the impact of a mixture of metals (Cd, Pb and Zn) on the physiology of the non-conventional yeast Pichia kudriavzevii. The incubation of yeast cells with 5 mg/l Cd, 10 mg/l Pb and 5 mg/l Zn, for 6 h, induced a loss of metabolic activity (assessed by FUN-1 staining) and proliferation capacity (evaluated by a clonogenic assay), with a small loss of membrane integrity (measured by trypan blue exclusion assay). The staining of yeast cells with calcofluor white revealed that no modification of chitin deposition pattern occurred during the exposure to metal mixture. Extending for 24 h, the exposure of yeast cells to metal mixture provoked a loss of membrane integrity, which was accompanied by the leakage of intracellular components. A marked loss of the metabolic activity and the loss of proliferation capacity were also observed. The analysis of the impact of a single metal has shown that, under the conditions studied, Pb was the metal responsible for the toxic effect observed in the metal mixture. Intracellular accumulation of Pb seems to be correlated with the metals toxic effects observed.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes" (NORTE-07-0124-FEDER-000028), Co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. Manuela D. Machado gratefully acknowledges the post-doctoral grant from FCT (SFRH/BPD/72816/2010). Vanessa A. Mesquita gratefully acknowledges the grant from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES). The authors also thank to Doctor Rosane Freitas Schwan to offer the yeast strain and to Doctor Helena M.V.M. Soares, from the Faculty of Engineering of Porto University, for the use of analytical facilities (AAS with flame atomization and AAS with electrothermal atomization)

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF

    When Affective (but not Cognitive) Ambivalence Predicts Discrimination towards a Minority Group

    No full text
    Individuals often hold ambivalent attitudes (i.e., positive and negative attitudes at the same time) toward groups and social categories. The aim of the present research was to examine the differential effects of affective and cognitive dimensions of ambivalence on the (amplification of) responses towards a minority group. We asked 188 students from the University of Perugia to read a short description of a fictitious group of immigrants. After expressing their affective and cognitive attitudes toward the target group, participants received positive, negative, or no supplementary information about this group. Discrimination was assessed by asking participants to allocate to the target group a percentage of a financial support fund for poor people (both Italian and immigrant) living in their regional area. As expected, we found that only affective ambivalence amplified either negative or positive responses toward the group

    Identification of an immunodominant IgE epitope of the Parietaria judaica major allergen

    No full text
    Par j 1.0101 is one of the two major allergens of the Parietaria judaica (Pj) pollen, and its three-dimensional structure was built by three-dimensional structural homology modeling. The resultant model was used to identify putative IgE binding regions. Western blot analysis of gene fragmentation products showed that the 1 to 30 region was capable of binding specific IgE from a pool of sera (n 5 30) of patients allergic to Pj pollen. Using the structural model as a guide, deletion and site-directed mutagenesis of the 1 to 30 region was performed, and the amino acids involved in IgE binding were identified. In addition, a synthetic peptide covering the 1 to 30 region was capable of binding human IgE without triggering histamine release from basophils of Pj allergic patients (n 5 6) and thus represents a haptenic molecule with potential use as an immunotolerant agent. This epitope is also present on the Par j 2.0101 major allergen representing a common IgE epitope. It is an immunodominant epitope, since it was capable of inhibiting 30% of all specific IgE against the Pj major allergens, and therefore, it might be a candidate for the future development of immunotherapeutics

    Systems biology: Developments and applications

    No full text
    © Springer-Verlag Berlin Heidelberg 2014. All rights are reserved. Systems biology relies on systems theory concepts and is applicable to both fundamental studies of cellular biology as well as applied research such as metabolic engineering. In this chapter, we map the context of systems biology developments and highlight its contribution in understanding the yeast carbon metabolism. Systems biology not only contributes towards the global overview of metabolism but also in combination with an integrative analysis approach facilitates the elucidation of molecular mechanisms. In particular we discuss the role of systems biology in unraveling the molecular details concerning glucose and galactose metabolism. In conclusion, this chapter provides an overview of the progress and impact of systems biology in carbon metabolism
    corecore