5 research outputs found
Fibrin Hydrogels Reinforced by Reactive Microgels for Stimulus-Triggered Drug Administration
Tissue engineering is a steadily growing field of research due to its wide-ranging applicability in the field of regenerative medicine. Application-dependent mechanical properties of a scaffold material as well as its biocompatibility and tailored functionality represent particular challenges. Here the properties of fibrin-based hydrogels reinforced by functional cytocompatible poly(N-vinylcaprolactam)-based (PVCL) microgels are studied and evaluated. The employment of temperature-responsive microgels decorated by epoxy groups for covalent binding to the fibrin is studied as a function of cross-linking degree within the microgels, microgel concentration, as well as temperature. Rheology reveals a strong correlation between the mechanical properties of the reinforced fibrin-based hydrogels and the microgel rigidity and concentration. The incorporated microgels serve as cross-links, which enable temperature-responsive behavior of the hydrogels, and slow down the hydrogel degradation. Microgels can be additionally used as carriers for active drugs, as demonstrated for dexamethasone. The microgelsâ temperature-responsiveness allows for triggered release of payload, which is monitored using a bioassay. The cytocompatibility of the microgel-reinforced fibrin-based hydrogels is demonstrated by LIVE/DEAD staining experiments using human mesenchymal stem cells. The microgel-reinforced hydrogels are a promising material for tissue engineering, owing to their superior mechanical performance and stability, possibility of drug release, and retained biocompatibility.</p
Recommended from our members
Impact of Reactive Amphiphilic Copolymers on Mechanical Properties and Cell Responses of Fibrin-Based Hydrogels
Mechanical properties of hydrogels can be modified by the variation of structure and concentration of reactive building blocks. One promising biological source for the synthesis of biocompatible hydrogels is fibrinogen. Fibrinogen is a glycoprotein in blood, which can be transformed enzymatically to fibrin playing an important role in wound healing and clot formation. In the present work, it is demonstrated that hybrid hydrogels with their improved mechanical properties, tunable internal structure, and enhanced resistance to degradation can be synthesized by a combination of fibrinogen and reactive amphiphilic copolymers. Water-soluble amphiphilic copolymers with tunable molecular weight and controlled amounts of reactive epoxy side groups are used as reactive crosslinkers to reinforce fibrin hydrogels. In the present work, copolymers that can influence the mechanical properties of fibrin-based hydrogels are used. The reactive copolymers increase the storage modulus of the hydrogels from 600 Pa to 30 kPa. The thickness of fibrin fibers is regulated by the copolymer concentration. It could be demonstrated that the fibrin-based hydrogels are biocompatible and support cell proliferation. Their degradation rate is considerably slower than that of native fibrin gels. In conclusion, fibrin-based hydrogels with tunable elasticity and fiber thickness useful to direct cell responses like proliferation and differentiation are produced. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
Impact of Reactive Amphiphilic Copolymers on Mechanical Properties and Cell Responses of FibrinâBased Hydrogels
Mechanical properties of hydrogels can be modified by the variation of structure and concentration of reactive building blocks. One promising biological source for the synthesis of biocompatible hydrogels is fibrinogen. Fibrinogen is a glycoprotein in blood, which can be transformed enzymatically to fibrin playing an important role in wound healing and clot formation. In the present work, it is demonstrated that hybrid hydrogels with their improved mechanical properties, tunable internal structure, and enhanced resistance to degradation can be synthesized by a combination of fibrinogen and reactive amphiphilic copolymers. Water-soluble amphiphilic copolymers with tunable molecular weight and controlled amounts of reactive epoxy side groups are used as reactive crosslinkers to reinforce fibrin hydrogels. In the present work, copolymers that can influence the mechanical properties of fibrin-based hydrogels are used. The reactive copolymers increase the storage modulus of the hydrogels from 600 Pa to 30 kPa. The thickness of fibrin fibers is regulated by the copolymer concentration. It could be demonstrated that the fibrin-based hydrogels are biocompatible and support cell proliferation. Their degradation rate is considerably slower than that of native fibrin gels. In conclusion, fibrin-based hydrogels with tunable elasticity and fiber thickness useful to direct cell responses like proliferation and differentiation are produced. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
Impact of Fibrin Gel Architecture on Hepatocyte Growth Factor Release and Its Role in Modulating Cell Behavior for Tissue Regeneration
A novel scaffold design has been created to enhance tissue engineering and regenerative medicine by optimizing the controlled, prolonged release of Hepatocyte Growth Factor (HGF), a powerful chemoattractant for endogenous mesenchymal stem cells. We present a new stacked scaffold that is made up of three different fibrin gel layers, each of which has HGF integrated into the matrix. The design attempts to preserve HGFâs regenerative properties for long periods of time, which is necessary for complex tissue regeneration. These multi-layered fibrin gels have been mechanically evaluated using rheometry, and their degradation behavior has been studied using D-Dimer ELISA. Understanding the kinetics of HGF release from this novel scaffold configuration is essential for understanding HGFâs long-term sustained bioactivity. A range of cell-based tests were carried out to verify the functionality of HGF following extended incorporation. These tests included 2-photon microscopy using phalloidin staining to examine cellular morphology, SEM analysis for scaffoldâcell interactions, and scratch and scatter assays to assess migration and motility. The analyses show that the novel stacking scaffold promotes vital cellular processes for tissue regeneration in addition to supporting HGFâs bioactivity. This scaffold design was developed for in situ tissue engineering. Using the body as a bioreactor, the scaffold should recruit mesenchymal stem cells from their niche, thus combining the regenerative abilities of HGF and MSCs to promote tissue remodeling and wound repair