71 research outputs found

    Invasive Fusarium rhinosinusitis in COVID-19 patients: report of three cases with successful management

    Get PDF
    Invasive fungal rhinosinusitis (IFRS) is a life-threatening infection that can occur in immunocompromised patients, including those with COVID-19. Although Mucorales and Aspergillus species are the most common causes of IFRS, infections caused by other fungi such as Fusarium are rare. In this report, we present three cases of proven rhinosinusitis fusariosis that occurred during or after COVID-19 infection. The diagnosis was confirmed through microscopy, pathology, and culture, and species identification of the isolates was performed by DNA sequencing the entire ITS1-5.8 rRNA-ITS2 region and translation elongation factor 1-alpha (TEF-1α). Antifungal susceptibility testing was conducted according to CLSI guidelines. The causative agents were identified as Fusarium proliferatum, F. oxysporum + Aspergillus flavus, and F. solani/falciforme. Treatment involved the administration of antifungal medication and endoscopic sinus surgery to remove the affected mucosa, leading to the successful resolution of the infections. However, one patient experienced a recurrence of IFRS caused by A. flavus 15 months later. Early diagnosis and timely medical and surgical treatment are crucial in reducing mortality rates associated with invasive fusariosis. Additionally, the cautious use of corticosteroids in COVID-19 patients is highly recommended

    Detection of Toxoplasma gondii in Acute and Chronic Phases of Infection in Immunocompromised Patients and Pregnant Women with Real-time PCR Assay Using TaqMan Fluorescent Probe

    Get PDF
    Background: Toxoplasma gondii, cause severe medical complications in infants and immune-compromised individuals. As using early, sensitive and rapid technique has major in diagnosis of toxoplasmosis, the present study was aimed to detect parasite by using from repetitive element (RE) and B1genes, in blood samples of seropositive immunocompromised patients and pregnant women. Methods: A total of 110 peripheral blood samples were collected from seropositive cases with anti-T. gondii antibodies, including immunocompromised patients and pregnant women. DNA was extracted by a commercial kit and subjected to TaqMan probe-based real-time PCR assay by using primers and probes specific for RE and B1 genes, separately. The data were analyzed by Kappa test and SPSS-22 software. Results: In the pregnant women, 17 (68%) and 14 (56%) samples from 25 IgM+/ IgG+ cases and, 7 (25%) and 6 (21.4%) samples from 28 IgG+/IgM- cases were positive by RE and B1 real time PCR, respectively. Likewise, in immunocompromised group, 20 (66.6%) and 17 (56.6%) samples from 30 IgM+/ IgG+ cases and 2 (7.4%) and 2 (7.4%) samples from 27 IgG+/ IgM- cases were positive by RE and B1 real time PCR, respectively. Conclusion: Probe-based real time PCR assay is a quantitative approach for early diagnosis of T. gondii infection in clinical samples. Moreover, this method can be more appropriate in diagnosis of acute and reactivated toxoplasmosis. In addition our results indicated that RE gene is more sensitive than B1 gene

    Molecular and microscopy detection of Pneumocystis jirovecii in hospitalized patients during the COVID-19 pandemic

    Get PDF
    IntroductionEarly detection of Pneumocystis jirovecii as an opportunistic pathogen that may endanger predisposed persons, including COVID-19 patients, may help to choose the optimal management.MethodsIn this study, 585, including 530 COVID-19 patients, with clinical and radiological evidence of respiratory diseases, were investigated for P. jirovecii screening. Clinical specimens were examined by direct microscopy and PCR, and randomly selected positive PCR products were confirmed through DNA sequence analysis.ResultsThirty-one (5.3%) samples were positive in P. jirovecii-specific nested-PCR, while by direct microscopic tests, Pneumocystis was observed in 22 (3.76%) samples. Males (61.7%) and patients over 50 years old (75.6%) were more commonly affected than others, and malaise and fatigue (84%), and wheezing (75%) were the most common symptoms, followed by fever (40.48%) and dyspnea (39.51%). Among the Pneumocystis-positive patients, three cases had coinfection with Aspergillus fumigatus, A. flavus, and A. niger (each n = 1), as documented by direct microscopy, culture, and species identification by PCR-sequencing.ConclusionPneumocystis pneumonia is still a diagnostic challenge; therefore, additional large-scale studies are needed to clarify the epidemiology of the disease in immunocompromised or COVID-19 patients

    In-vitro Activity of 10 Antifungal Agents against 320 Dermatophyte Strains Using Microdilution Method in Tehran

    Get PDF
    Abstract Dermatophyte fungi are the etiologic agents of skin infections commonly referred to as ringworm. These infections are not dangerous but as a chronic cutaneous infections they may be difficult to treat and can also cause physical discomfort for patients. They are considered important as a public health problem as well. No information is available regarding the efficacy of antifungal agents against dermatophytes in Tehran. Therefore, in this study we evaluated the efficacy of 10 systemic and topical antifungal medications using CLSI broth microdilution method (M38-A). The antifungal agents used included griseofulvin, terbinafine, itraconazole, ketoconazole, fluconazole, voriconazole, clotrimazole, ciclopirox olamine, amorolfine and naftifine.Fifteen different species of dermatophytes which were mostly clinical isolates were used as follows; T. mentagrophytes, T. rubrum, E. floccosum, M. canis, T. verrucosum, T. tonsurans, M. gypseum, T. violaceum, M. ferruginum, M. fulvum, T. schoenleinii, M. racemosum, T. erinacei, T. eriotrephon and Arthroderma benhamiae. The mean number of fungi particles (conidia) inoculated was 1.25 ×10⁴ CFU/mL. Results were read after 7 days of incubation at 28 °C. According to the obtained results,itraconazole and terbinafine showed the lowest and fluconazole had the greatest MIC values for the most fungi tested. Based on the results, it is necessary to do more research and design a reliable standard method for determination of antifungal susceptibility to choose proper antibiotics with fewer side effects and decrease antifungal resistance and risk of treatment failure

    New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto

    Get PDF
    Cystic echinococcosis, a zoonotic disease caused by Echinococcus granulosus sensu lato (s.l.), is a significant global public health concern. Echinococcus granulosus s. l. is currently divided into numerous genotypes (G1-G8 and G10) of which G1-G3 are the most frequently implicated genotypes in human infections. Although it has been suggested that G1-G3 could be regarded as a distinct species E. granulosus sensu stricto (s. s.), the evidence to support this is inconclusive. Most importantly, data from nuclear DNA that provide means to investigate the exchange of genetic material between G1-G3 is lacking as none of the published nuclear DNA studies have explicitly included G2 or G3. Moreover, the commonly used relatively short mtDNA sequences, including the complete coxl gene, have not allowed unequivocal differentiation of genotypes G1-G3. Therefore, significantly longer mtDNA sequences are required to distinguish these genotypes with confidence. The main aim of this study was to evaluate the phylogenetic relations and taxonomy of genotypes G1-G3 using sequences of nearly complete mitogenomes (11,443 bp) and three nuclear loci (2984 bp). A total of 23 G1-G3 samples were analysed, originating from 5 intermediate host species in 10 countries. The mtDNA data demonstrate that genotypes G1 and G3 are distinct mitochondrial genotypes (separated by 37 mutations), whereas G2 is not a separate genotype or even a monophyletic cluster, but belongs to G3. Nuclear data revealed no genetic separation of G1 and G3, suggesting that these genotypes form a single species due to ongoing gene flow. We conclude that: (a) in the taxonomic sense, genotypes G1 and G3 can be treated as a single species E. granulosus s. s.; (b) genotypes G1 and G3 should be regarded as distinct genotypes only in the context of mitochondrial data; (c) we recommend excluding G2 from the genotype list. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    Isolation and molecular characterization of clinical and environmental dematiaceous fungi and relatives from Iran

    Get PDF
    Background and Purpose: The frequency and genetic diversity of black fungi in environmental and clinical settings have not been fully studied in Iran. This study aimed to identify and evaluate intra- and inter-species DNA sequence variation and also understand the phylogenetic relationships of melanized fungi and relatives isolated from different geographical regions of Iran.Materials and Methods: In total, 111 clinical and environmental strains of dematiaceous fungi were isolated, and their internal transcribed spacer ribosomal DNA(rDNA) regions were sequenced and analyzed.Results: An inter-species nucleotide sequence diversity rate of 1 to 464 nucleotides was observed between the species. Intra-species differences were found in the strains of Alternaria alternata, Cladosporium cladosporioides, Alternaria tenuissima, Curvularia spicifera, Aureobasidium pullulans, Curvularia hawaiiensis, Neoscytalidium dimidiatum,Alternaria terricola, Alternaria chlamydospora, Didymella glomerata, and Drechslera dematioidea by 0–59, 0–22, 0–4, 0–4, 0–3, 0–2, 0–2, 0–2, 0–2, 0–1, and 0–1 nt, respectively.Conclusion: The internal transcribed spacer rDNA is useful for the discrimination of several taxa of dematiaceous fungi. However, a better understanding of the taxonomy of species of Alternaria requires a larger rDNA region or a library of other gene sequences

    Molecular identification of uncommon clinical yeast species in Iran

    No full text
    Background and Purpose: By using advanced detection/identification methods, the list of emerging uncommon opportunistic yeast infections is rapidly expanding worldwide. Our aim in the present study was sequence-based species delineation of previously unidentified yeasts obtained from a clinically yeast collection. Materials and Methods: A total of twenty three out of the 855 (5.7%) yeast isolates which formerly remained unidentified by PCR-RFLP method, were subjected to sequence analysis of the entire internal transcribed spacers (ITS) regions of rDNA. The precise species recognition was performed by the comparison of the sequences with the reliable GenBank database. Results: Sequencing analysis of the ITS region of the strains revealed several uncommon yeasts that were not reported previously in Iran. The species include Hanseniaspora uvarum, Saccharomyces cerevisiae, Sporidiobolus salmonicolor, Pichia fabianii, Pichia fermentans, Candida famata, Candida inconspicua, Candida maqnoliae, Candida guilliermondii, Candida kefyr, Candida rugosa, Candida lusitaniae, Candida orthopsilosis, and Candida viswanathii. Conclusion: We identified several rare clinical isolates selected from a big collection at the species level by ITS-sequencing. As the list of yeast species as opportunistic human fungal infections is increasing dramatically, and many isolates remain unidentified using conventional methods, more sensitive and specific advanced approaches help us to clarify the aspects of microbial epidemiology of the yeast infections

    A New Isolate of the Genus Malassezia Based on the Sequence Analysis of 26S and ITS1 in Ribosomal DNA

    No full text
    Malassezia species considered to be the etiological agents of pityriasis versicolor andMalassezia follicolitis in humans. Recently, on the basis of molecular data, four new specieswere added to the genus. In total, 11 species have been described and accepted sofar. In this study we describe a new isolate of Malassezia based on the nucleotide sequenceof 26SrDNA and ITS1 regions, as the accepted critical markers for description ofthe species.The yeast was isolated from a hamster. Two primer pairs, one for amplification of D1/D2-26Sr DNA and another for the ITS1 region were used in PCR. The PCR products weresequenced and analyzed to compare with other similar sequences which are already depositedin the GenBank. The 26SrDNA PCR product was also digested with the restrictionenzyme CfoI.Malassezia-specific universal primer pairs successfully amplified the 26srDNA and ITS1regions of the new isolate, providing a single PCR product of about 580 and 280 basepairs, respectively. After digestion of the 26s PCR product with the enzyme CfoI, a uniqueand different RFLP pattern was observed. Sequence analysis of D1/D226s and ITS1 regionswere compared with the same regions in all already described Malassezia species,which implied a different and unique new sequences. The phylogenetic tree of both regionsshowed that the isolate could be a different Malassezia isolate.Regarding the new RFLP pattern of D1/D226SrDBA and the unique nucleotide sequence ofboth D1/D2 26SrDNA and ITS1 regions, we propose the isolate to be a new Malassezia
    corecore