130 research outputs found

    A new neutron study of the short range order inversion in Fe1−x_{1-x}Crx_x

    Full text link
    We have performed new neutron diffuse scattering measurements in Fe1−x_{1-x}Crx_x solid solutions, in a concentration range 0<<x<<0.15, where the atomic distribution shows an inversion of the short range order. By optimizing the signal-background ratio, we obtain an accurate determination of the concentration of inversion x0_0 =0.110(5). We determine the near neighbor atomic short range order parameters and pair potentials, which change sign at x0_0. The experimental results are compared with previous first principle calculations and atomistic simulations.Comment: 6 pages; 6 figure

    Spin dynamics in the ordered spin ice Tb2_2Sn2_2O7_7

    Full text link
    Geometrical frustration is a central challenge in contemporary condensed matter physics, a crucible favourable to the emergence of novel physics. The pyrochlore magnets, with rare earth magnetic moments localized at the vertices of corner-sharing tetrahedra, play a prominent role in this field, with a rich variety of exotic ground states ranging from the "spin ices" \hoti\ and \dyti\ to the "spin liquid" and "ordered spin ice" ground states in \tbti\ and \tbsn. Inelastic neutron scattering provides valuable information for understanding the nature of these ground states, shedding light on the crystal electric field (CEF) level scheme and on the interactions between magnetic moments. We have performed such measurements with unprecedented neutron flux and energy resolution, in the "ordered spin ice" \tbsn. We argue that a new interaction, which involves the spin lattice coupling through a low temperature distortion of the trigonal crystal field, is necessary to account for the data

    Single-crystal growth and magnetic properties of the metallic molybdate pyrochlore Sm2Mo2O7

    Full text link
    We have successfully grown cm3-size single crystals of the metallic-ferromagnet Sm2Mo2O7 by the floating-zone method using an infrared-red image furnace. The growth difficulties and the remedies found using a 2-mirror image furnace are discussed. Magnetization studies along the three crystalline axes of the compound are presented and discussed based on our recent proposal of an ordered spin-ice ground state for this compoun

    Sub-Riemannian Fast Marching in SE(2)

    Full text link
    We propose a Fast Marching based implementation for computing sub-Riemanninan (SR) geodesics in the roto-translation group SE(2), with a metric depending on a cost induced by the image data. The key ingredient is a Riemannian approximation of the SR-metric. Then, a state of the art Fast Marching solver that is able to deal with extreme anisotropies is used to compute a SR-distance map as the solution of a corresponding eikonal equation. Subsequent backtracking on the distance map gives the geodesics. To validate the method, we consider the uniform cost case in which exact formulas for SR-geodesics are known and we show remarkable accuracy of the numerically computed SR-spheres. We also show a dramatic decrease in computational time with respect to a previous PDE-based iterative approach. Regarding image analysis applications, we show the potential of considering these data adaptive geodesics for a fully automated retinal vessel tree segmentation.Comment: CIARP 201

    Low temperature structural effects in the (TMTSF)2_2PF6_6 and AsF6_6 Bechgaard salts

    Full text link
    We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)2_2PF6_6 and (TMTSF)2_2AsF6_6 (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)2_2PF6_6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2_2PF6_6-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 102^2 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF6_6 and AsF6_6 salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {\theta}E_E = 8.3 K and {\theta}E_E = 6.7 K for the PF6_6-D12 and AsF6_6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2_2PF6_6 is dominated by the librational motion of the PF6_6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {\theta}E_E = 50 K and {\theta}E_E = 76 K for the PF6_6-D12 and PF6_6-H12 salts, respectively

    Optimally Adapted Meshes for Finite Elements of Arbitrary Order and W1p Norms

    Full text link
    Given a function f defined on a bidimensional bounded domain and a positive integer N, we study the properties of the triangulation that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the W1p norm and we consider Lagrange finite elements of arbitrary polynomial order m-1. We establish sharp asymptotic error estimates as N tends to infinity when the optimal anisotropic triangulation is used. A similar problem has been studied earlier, but with the error measured in the Lp norm. The extension of this analysis to the W1p norm is crucial in order to match more closely the needs of numerical PDE analysis, and it is not straightforward. In particular, the meshes which satisfy the optimal error estimate are characterized by a metric describing the local aspect ratio of each triangle and by a geometric constraint on their maximal angle, a second feature that does not appear for the Lp error norm. Our analysis also provides with practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant. We discuss the extension of our results to finite elements on simplicial partitions of a domain of arbitrary dimension, and we provide with some numerical illustration in two dimensions.Comment: 37 pages, 6 figure
    • …
    corecore