11 research outputs found

    Pituitary pathology and gene expression in acromegalic cats

    Get PDF
    © 2019 Endocrine Society. The prevalence of GH-secreting pituitary tumors in domestic cats (Felis catus) is 10-fold greater than in humans. The predominant inhibitory receptors of GH-secreting pituitary tumors are somatostatin receptors (SSTRs) and D2 dopamine receptor (DRD2). The expression of these receptors is associated with the response to somatostatin analog and dopamine agonist treatment in human patients with acromegaly. The aim of this study was to describe pathological features of pituitaries from domestic cats with acromegaly, pituitary receptor expression, and investigate correlates with clinical data, including pituitary volume, time since diagnosis of diabetes, insulin requirement, and serum IGF1 concentration. Loss of reticulin structure was identified in 15 of 21 pituitaries, of which 10 of 15 exhibited acinar hyperplasia. SSTR1, SSTR2, SSTR5, and DRD2 mRNA were identified in the feline pituitary whereas SSTR3 and SSTR4 were not. Expression of SSTR1, SSTR2, and SSTR5 was greater in acromegalic cats compared with controls. A negative correlation was identified between DRD2 mRNA expression and pituitary volume. The loss of DRD2 expression should be investigated as a mechanism allowing the development of larger pituitary tumors

    A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism.

    No full text
    CONTEXT: Glial cells missing B (GCMB), the mammalian homolog of the Drosophila GCM gene, encodes a 506-amino-acid parathyroid-specific transcription factor. To date, only two different heterozygous GCMB mutations have been reported in three kindreds with autosomal dominant hypoparathyroidism. OBJECTIVE: Our objective was to investigate a family with autosomal dominant hypoparathyroidism for PTH, CaSR, and GCMB mutations. METHODS: Leukocyte DNA was used with exon-specific primers for PCR amplification and the DNA sequences of the PCR products determined. Functional analyses using fluorescence microscopy, EMSAs, and luciferase reporter assays were undertaken. Informed consent was obtained using protocols approved by a national ethical committee. RESULTS: DNA sequence analysis revealed an A to C transversion at codon 502 of GCMB, which altered the wild-type asparagine (Asn) to histidine (His). Functional studies, using transient transfections of COS7 cells with GCMB wild-type and mutant (Asn502His) tagged constructs, demonstrated that the wild-type and mutant proteins localized to the nucleus and retained the ability to bind the GCM-consensus DNA recognition motif. However, a luciferase reporter assay demonstrated that the Asn502His mutation resulted in a reduction in gene transactivation. Moreover, cotransfection of the wild-type with mutant did not lead to an increase in luciferase activity, thereby demonstrating a dominant-negative effect of the Asn502His mutant that would be consistent with an autosomal dominant inheritance. CONCLUSION: Our results, which have identified the first dominant missense GCMB mutation, help to increase our understanding of the mechanism underlying gene transactivation that is a prerequisite for the function of this parathyroid gland-specific transcription factor

    Studies of mice deleted for Sox3 and uc482: relevance to X-linked hypoparathyroidism

    Get PDF
    Hypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.3. These could result in loss, gain, or movement of regulatory elements, which include ultraconserved element uc482, which could alter SOX3 expression. To investigate this, we analysed SOX3 expression in EBV-transformed lymphoblastoid cells from three affected males, three unaffected males, and four carrier females from one XLHPT family. SOX3 expression was similar in all individuals, indicating that the spatiotemporal effect of the interstitial deletion-insertion on SOX3 expression postulated to occur in developing parathyroids did not manifest in lymphoblastoids. Expression of SNTG2, which is duplicated and inserted into the X chromosome, and ATP11C, which is moved telomerically, were also similarly expressed in all individuals. Investigation of male hemizygous (Sox3−/Y and uc482−/Y) and female heterozygous (Sox3+/− and uc482+/−) knockout mice, together with wild-type littermates (male Sox3+/Y and uc482+/Y, and female Sox3+/+ and uc482+/+), revealed Sox3−/Y, Sox3+/−, uc482−/Y, and uc482+/− mice to have normal plasma biochemistry, compared to their respective wild-type littermates. When challenged with a low calcium diet, all mice had hypocalcaemia, and elevated plasma PTH concentrations and alkaline phosphatase activities, and Sox3−/Y, Sox3+/−, uc482−/Y, and uc482+/− mice had similar plasma biochemistry, compared to wild-type littermates. Thus, these results indicate that absence of Sox3 or uc482 does not cause hypoparathyroidism and that XLHPT likely reflects a more complex mechanism

    Studies of mice deleted for Sox3 and uc482: Relevance to X-linked hypoparathyroidism

    No full text
    Hypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.3. These could result in loss, gain, or movement of regulatory elements, which include ultraconserved element uc482, which could alter SOX3 expression. To investigate this, we analysed SOX3 expression in EBV-transformed lymphoblastoid cells from three affected males, three unaffected males, and four carrier females from one XLHPT family. SOX3 expression was similar in all individuals, indicating that the spatiotemporal effect of the interstitial deletion-insertion on SOX3 expression postulated to occur in developing parathyroids did not manifest in lymphoblastoids. Expression of SNTG2, which is duplicated and inserted into the X chromosome, and ATP11C, which is moved telomerically, were also similarly expressed in all individuals. Investigation of male hemizygous (Sox3−/Y and uc482−/Y) and female heterozygous (Sox3+/− and uc482+/−) knockout mice, together with wild-type littermates (male Sox3+/Y and uc482+/Y, and female Sox3+/+ and uc482+/+), revealed Sox3−/Y, Sox3+/−, uc482−/Y, and uc482+/− mice to have normal plasma biochemistry, compared to their respective wild-type littermates. When challenged with a low calcium diet, all mice had hypocalcaemia, and elevated plasma PTH concentrations and alkaline phosphatase activities, and Sox3−/Y, Sox3+/−, uc482−/Y, and uc482+/− mice had similar plasma biochemistry, compared to wild-type littermates. Thus, these results indicate that absence of Sox3 or uc482 does not cause hypoparathyroidism and that XLHPT likely reflects a more complex mechanism

    Identification and characterization of novel parathyroid-specific transcription factor Glial Cells Missing Homolog B (GCMB) mutations in eight families with autosomal recessive hypoparathyroidism.

    No full text
    GCMB is a member of the small transcription factor family GCM (glial cells missing), which are important regulators of development, present in vertebrates and some invertebrates. In man, GCMB encodes a 506 amino acid parathyroid gland-specific protein, mutations of which have been reported to cause both autosomal dominant and autosomal recessive hypoparathyroidism. We ascertained 18 affected individuals from 12 families with autosomal recessive hypoparathyroidism and have investigated them for GCMB abnormalities. Four different homozygous germline mutations were identified in eight families that originate from the Indian Subcontinent. These consisted of a novel nonsense mutation R39X; a missense mutation, R47L in two families; a novel missense mutation, R110W; and a novel frameshifting deletion, I298fsX307 in four families. Haplotype analysis, using polymorphic microsatellites from chromosome 6p23-24, revealed that R47L and I298fsX307 mutations arose either as ancient founders, or recurrent de novo mutations. Functional studies including: subcellular localization studies, EMSAs and luciferase-reporter assays, were undertaken and these demonstrated that: the R39X mutant failed to localize to the nucleus; the R47L and R110W mutants both lost DNA-binding ability; and the I298fsX307 mutant had reduced transactivational ability. In order to gain further insights, we undertook 3D-modeling of the GCMB DNA-binding domain, which revealed that the R110 residue is likely important for the structural integrity of helix 2, which forms part of the GCMB/DNA binding interface. Thus, our results, which expand the spectrum of hypoparathyroidism-associated GCMB mutations, help elucidate the molecular mechanisms underlying DNA-binding and transactivation that are required for this parathyroid-specific transcription factor
    corecore