473 research outputs found

    A compositional method for reliability analysis of workflows affected by multiple failure modes

    Get PDF
    We focus on reliability analysis for systems designed as workflow based compositions of components. Components are characterized by their failure profiles, which take into account possible multiple failure modes. A compositional calculus is provided to evaluate the failure profile of a composite system, given failure profiles of the components. The calculus is described as a syntax-driven procedure that synthesizes a workflows failure profile. The method is viewed as a design-time aid that can help software engineers reason about systems reliability in the early stage of development. A simple case study is presented to illustrate the proposed approach

    SKIN, INFLAMMATION AND SULFUROUS WATERS: WHAT IS KNOWN, WHAT IS BELIEVED

    Get PDF
    One could argue that balneotherapy and mud therapy would have not lasted 2,000 years or so If they were not effective. No doubt a long history cannot be taken per se as scientific proof of efficacy. Some empiricism is still present in the field: the concept of spa itself is quite confounding, whereas spring waters are used for leisure purposes but also for non-acute patient therapy and late phases of clinical recovery. These confounding elements ultimately feed the opinion of those who aprioristically reject any potential beneficial effect of balneotherapy: instead, it should at least generate questions that deserve scientific answers. Clinical practices sequentially integrating pharmacological therapy with those natural principles for which a sufficient scientific demonstration is available, would probably cut the costs of public health, generating widespread advantages for the community. Recently, it has become evident that mineral waters may have intrinsic pharmacological properties. Of the numerous salts dissolved in thermal waters that might show pharmacological properties, for certain hydrogen sulfide (H2S) contained in sulfurous waters is the one that has obtained greater scientific attention, to which should be added the extensive scientific effort recently dedicated to H2S as a cellular gasotransmitter, independently from its natural sources. Dermatology and cosmetics are among the most studied applications of sulfurous waters, around which, however, some empiricism still confounds opinions: we therefore considered that a state-of-the-art focus on this topic might be timely and useful for future studies

    Tracking fibrosis in myeloproliferative neoplasms by CCR2 expression on CD34+ cells

    Get PDF
    In myeloproliferative neoplasm (MPNs), bone marrow fibrosis - mainly driven by the neoplastic megakaryocytic clone - dictates a more severe disease stage with dismal prognosis and higher risk of leukemic evolution. Therefore, accurate patient allocation into different disease categories and timely identification of fibrotic transformation are mandatory for adequate treatment planning. Diagnostic strategy still mainly relies on clinical/laboratory assessment and bone marrow histopathology, which, however, requires an invasive procedure and frequently poses challenges also to expert hemopathologists. Here we tested the diagnostic accuracy of the detection, by flow cytometry, of CCR2+CD34+ cells to discriminate among MPN subtypes with different degrees of bone marrow fibrosis. We found that the detection of CCR2 on MPN CD34+ cells has a very good diagnostic accuracy for the differential diagnosis between “true” ET and prePMF (AUC 0.892, P<0.0001), and a good diagnostic accuracy for the differential diagnosis between prePMF and overtPMF (AUC 0.817, P=0.0089). Remarkably, in MPN population, the percentage of CCR2-expressing cells parallels the degree of bone marrow fibrosis. In ET/PV patients with a clinical picture suggestive for transition into spent phase, we demonstrated that only patients with confirmed secondary MF showed significantly higher levels of CCR2+CD34+ cells. Overall, flow cytometric CCR2+CD34+ cell detection can be envisioned in support of conventional bone marrow histopathology in compelling clinical scenarios, with the great advantage of being extremely rapid. For patients in follow-up, its role can be conceived as an initial patient screening for subsequent bone marrow biopsy when disease evolution is suspected

    ROS in platelet biology: Functional aspects and methodological insights

    Get PDF
    © 2020 by the authors. Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers

    Buffering Adaptive Immunity by Hydrogen Sulfide

    Get PDF
    Abstract: T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses

    Different waters for different performances: Can we imagine sport-related natural mineral spring waters?

    Get PDF
    Preserving the hydration status means to balance daily fluids and salt losses with gains, where the losses depend on several physiological and environmental factors. Especially for athletes, these losses could be relevant and negatively influence the performance: therefore, their hydro-saline status must be preserved with personalized pre-and rehydration plans all along the performance period. Scientific literature in this field is mainly dedicated to artificial sport drinks. Different territories in most world areas are rich in drinking natural mineral spring waters with saline compositions that reflect their geological origin and that are used for human health (often under medical prescription). However, scarce scientific attention has been dedicated to the use of these waters for athletes. We therefore reviewed the existing literature from the innovative viewpoint of matching spring water mineral compositions with different athletic performances and their hydro-saline requirements

    Physical activity and redox balance in the elderly: Signal transduction mechanisms

    Get PDF
    Reactive Oxygen Species (ROS) are molecules naturally produced by cells. If their levels are too high, the cellular antioxidant machinery intervenes to bring back their quantity to physiological conditions. Since aging often induces malfunctioning in this machinery, ROS are considered an effective cause of age-associated diseases. Exercise stimulates ROS production on one side, and the antioxidant systems on the other side. The effects of exercise on oxidative stress markers have been shown in blood, vascular tissue, brain, cardiac and skeletal muscle, both in young and aged people. However, the intensity and volume of exercise and the individual subject characteristics are important to envisage future strategies to adequately personalize the balance of the oxidant/antioxidant environment. Here, we reviewed the literature that deals with the effects of physical activity on redox balance in young and aged people, with insights into the molecular mechanisms involved. Although many molecular pathways are involved, we are still far from a comprehensive view of the mechanisms that stand behind the effects of physical activity during aging. Although we believe that future precision medicine will be able to transform exercise administration from wellness to targeted prevention, as yet we admit that the topic is still in its infancy
    corecore