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Abstract: T cell-mediated adaptive immunity is designed to respond to non-self antigens and
pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1),
Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and
autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one
of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory
and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both en-
dogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes,
polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization,
adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we
offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a
functional balance between Th1, Th2, Th17 and Treg immunological responses.

Keywords: gasotransmitters; NaHS; cystathionine-synthase; cystathionine-lyase; sulphurous waters

1. Introduction

T lymphocytes develop from CD7+CD34+ lymphoid progenitors, generated in the
bone marrow and differentiated in the thymus. During thymic selection, they develop
the ability to discriminate between self and non-self. T lymphocytes can be grouped into
two main categories: helper CD4+ T cells, that regulate the whole immune response, and
cytotoxic CD8+ T cells, that actively kill pathogens. Since T cells are essential components of
adaptive immune responses, impaired T cell functions ultimately lead to immunodeficiency,
promoting pathogen infections as well as various forms of tumors. Autoimmune disorders
caused by uncontrolled autoreactive T cells include multiple sclerosis, rheumatoid arthritis,
inflammatory bowel disease, diabetes, psoriasis, and autoimmune thyroiditis [1–3].

T-helper (Th) cells have key functions in adaptive immunity and are involved in
autoimmunity, asthma, allergy reactions, and tumor immunity. During T cell receptor
(TCR)-mediated activation in the presence of specific cytokines in the surrounding microen-
vironment, naïve CD4+ T cells can polarize into one of multiple Th cell lineages, including
Th1, Th2, Th17, and regulatory T (Treg) cells (Figure 1). Differentiation of different CD4+

effector/regulatory T-cell subpopulations is predominantly induced by specific sets of
cytokines and finely tuned by different signaling pathways and transcription factors [4–7].
Th1 cells produce interferon-γ (IFN-γ), boosting cell-mediated immunity towards intracel-
lular infections, whereas Th2 cells release interleukin (IL)-4, promoting humoral immunity
to parasitic helminths. Th17 cells produce IL-17 and may have adapted to defend humans
against microorganisms that Th1 and Th2 responses are not specific for, such as invasive
bacteria as well as certain fungi [8–10]. The peculiar characteristic of IL-17 is that it has a
potent activity on stromal cells in all tissues, leading to the production of inflammatory
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cytokines and chemiotaxis of leukocytes, particularly neutrophils, thus linking innate to
adaptive immunity. Despite their significant role in host defense, Th17 have attracted great
interest in recent years for their contribution in the pathogenesis of several autoimmune
and inflammatory diseases [11]. Indeed, Th17 are pro-inflammatory T cells, and when
in excess they promote autoimmunity and tissue damage. On the other hand, Treg cells,
characterized by the expression of forkhead box transcription factor FoxP3, are required
for immunological self-tolerance and homeostasis. They inhibit a wide range of immune
responses (activated by Th1, Th2, and Th17 cells) as well as undesired immunity against a
multitude of antigens, such as self-antigens, bacteria-originated antigens, and exogenous
allergens. As a result, a deficiency in Treg cell population can result in acute inflammatory
disorders such as autoimmunity, colitis, and allergies [12,13].

Cells 2022, 11, x FOR PEER REVIEW 2 of 17 
 

 

immunity to parasitic helminths. Th17 cells produce IL-17 and may have adapted to de-
fend humans against microorganisms that Th1 and Th2 responses are not specific for, such 
as invasive bacteria as well as certain fungi [8–10]. The peculiar characteristic of IL-17 is 
that it has a potent activity on stromal cells in all tissues, leading to the production of 
inflammatory cytokines and chemiotaxis of leukocytes, particularly neutrophils, thus 
linking innate to adaptive immunity. Despite their significant role in host defense, Th17 
have attracted great interest in recent years for their contribution in the pathogenesis of 
several autoimmune and inflammatory diseases [11]. Indeed, Th17 are pro-inflammatory 
T cells, and when in excess they promote autoimmunity and tissue damage. On the other 
hand, Treg cells, characterized by the expression of forkhead box transcription factor 
FoxP3, are required for immunological self-tolerance and homeostasis. They inhibit a 
wide range of immune responses (activated by Th1, Th2, and Th17 cells) as well as unde-
sired immunity against a multitude of antigens, such as self-antigens, bacteria-originated 
antigens, and exogenous allergens. As a result, a deficiency in Treg cell population can 
result in acute inflammatory disorders such as autoimmunity, colitis, and allergies [12,13].  

 
Figure 1. Th1, Th2, Th17, and Treg T CD4+ subset cells. Master transcription factors promoting Th 
polarization are reported inside cells (T-bet, GATA3, RORγT and Foxp3 for Th1, Th2, Th17, and 
Treg cell, respectively) together with selective secreted cytokines (γ-IFN, IL-4, IL-17 and IL-10 for 
Th1, Th2, Th17, and Treg cell, respectively). The main cytokines (IL-2, IL-4, IL-6, IL-12, IL-10, IL-21, 
IFN-γ, and TGF-1β) regulating Th polarization are reported: IL-10, secreted by Treg, acts as major 
inhibiting factors of Th polarization and proliferation. 

Endogenous hydrogen sulfide (H2S) exerts a variety of physiologically relevant ac-
tivities. It belongs to the “gasotransmitter” family, along with nitric oxide (NO), carbon 
monoxide (CO), and sulfur dioxide (SO2). Once considered as poisonous and possibly fa-
tal gases, they are now recognized as crucial intracellular signaling molecules with a wide 
range of physiological activities, and several H2S-releasing compounds are currently in 
preclinical and clinical trial, showing promising effects and therapeutic potential [14]. Spe-
cifically, the relevance of H2S in immune and inflammatory responses has long been a 
relevant topic of scientific research. H2S has been shown to modulate several immune cell 

Figure 1. Th1, Th2, Th17, and Treg T CD4+ subset cells. Master transcription factors promoting Th
polarization are reported inside cells (T-bet, GATA3, RORγT and Foxp3 for Th1, Th2, Th17, and Treg
cell, respectively) together with selective secreted cytokines (γ-IFN, IL-4, IL-17 and IL-10 for Th1,
Th2, Th17, and Treg cell, respectively). The main cytokines (IL-2, IL-4, IL-6, IL-12, IL-10, IL-21, IFN-γ,
and TGF-1β) regulating Th polarization are reported: IL-10, secreted by Treg, acts as major inhibiting
factors of Th polarization and proliferation.

Endogenous hydrogen sulfide (H2S) exerts a variety of physiologically relevant ac-
tivities. It belongs to the “gasotransmitter” family, along with nitric oxide (NO), carbon
monoxide (CO), and sulfur dioxide (SO2). Once considered as poisonous and possibly
fatal gases, they are now recognized as crucial intracellular signaling molecules with a
wide range of physiological activities, and several H2S-releasing compounds are currently
in preclinical and clinical trial, showing promising effects and therapeutic potential [14].
Specifically, the relevance of H2S in immune and inflammatory responses has long been a
relevant topic of scientific research. H2S has been shown to modulate several immune cell
activities, including monocyte and polymorphonuclear cell apoptosis, leukocyte adhesion
and infiltration, T-cell activation, proliferation, and inflammatory cytokine production.
Autoimmune disorders, neurodegenerative diseases, asthma, acute pancreatitis, and sepsis
have all been related to the impact of H2S in inflammation [15–18]. Interestingly, H2S has
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been demonstrated to modulate T-cell lineage polarization, therefore representing a new
and potential target to modulate and improve adaptive immunity responses.

2. Hydrogen Sulfide Biology, Intracellular Signal Transduction and Potential Targets
2.1. Hydrogen Sulfide Biology

H2S was considered a lethal gas due to its flammability and corrosive properties
but, more recently, it has been identified as a gaseous second messenger, alongside nitric
oxide, and carbon monoxide [19]. H2S is soluble in both water and physiological fluids,
it readily passes from water to air, and it volatilizes and is converted in the lungs in
the presence of high oxygen concentrations [20]. Thus, H2S refers to a mixture of H2S,
hydrosulfide and other sulfide species [19,21,22]. It is a colorless gas originating from
geothermal activity, and it is found in plants as well as in synthetic compounds such as
NaHS and GYY4137 [15,21,23–27]. Endogenous H2S is mainly synthesized from L-cysteine
by cytoplasmic and mitochondrial cystathionine-synthase (CBS) and cystathionine-lyase
(CSE) enzymatic activities, and is primarily generated by epithelial, vascular, and smooth
muscle cells [23,28]. In addition, the combined activity of cysteine aminotransferase (CAT)
and 3-mercaptopyruvate sulfurtransferase (3-MST) produces endogenous H2S in cytoplasm
and mitochondria, respectively [15,21,23,29]. Moreover, non-enzymatic sources of H2S
include glucose (through glycolysis), glutathione (GSH), inorganic and organic polysulfides,
and bacterial activity in the gastrointestinal and respiratory mucosa [22,24,26] (Figure 2).
H2S can directly act on its biological targets or be stored and metabolized. Finally, it is
excreted by the kidneys through urine, intestine via flatus and lungs through exhaled
air [23,28]. After synthesis, given its propensity to easily diffuse through lipid membranes
without using specific transporters, H2S rapidly acts on its molecular targets expressed by
several cells, including those in the respiratory, cardiovascular, and neurological systems,
regulating several cellular processes [19,21,28,30–33]. The concentration of H2S is crucial
in determining its biological functions in a variety of disorders. However, data on H2S
concentration in plasma and extracellular matrix are extremely variable. Although several
attempts to measure the plasma levels of H2S have been made, most of them resulted
unfruitfully [34]. Many reviews usually mention baseline sulfide levels in plasma ranging
from 1–100 µM, however these values could be biased by the chemical experimental
conditions associated with the methods used. Therefore, the exact free and bioavailable
sulfide concentration in blood and tissues is probably lower [19,34–37]. The substantial
differences in the absolute values of baseline endogenous H2S levels reflect the differences
in the analytical methods used by various groups. In plasma, H2S exists as a mix of
approximately 20% H2S, 80% HS− ion and a very low percentage of S2− at a pH of 7.4 [37].
Moreover, the composition of sulfide forms in plasma is sensitive to temperature and pH,
which affect the conversion of free form and bounded form as sulfates, sulfide, sulfonates,
and elementary sulfur [36,37]. H2S plasma levels are also influenced by the interaction
with blood cells as erythrocytes and plasma proteins [37–40]. Various methods have been
developed to detect the amount of free sulfide and bound sulfide, obviously only when it
is released from its bounded form. The proposed methods include colorimetric methods
(such as direct or indirect methylene blue assay) [41], absorbance-based techniques [42],
microfluids methods [43], gas and liquid chromatography [44,45], and electrochemical
methods using ion-selective electrodes [46] and fluorescent probes [47]. Some of these
methods induce protein desulfuration, thus affect the actual H2S measurement artificially
elevating sulfide values (for instance, methylene blue assay). However, these methods
have poor reliability and sensitivity, showing several limitations that are associated with
the chemical characteristics of H2S, such as the propensity to permeate across cellular
membranes, exceptionally short half-life rapid oxidation, rapid oxidation, and elevated
reactivity with biological targets [48,49].
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Figure 2. Source of H2S. There are four enzymatic pathways (dotted green rectangle) for the biosyn-
thesis of H2S, including CBS, CSE, 3MST coupled with CAT, and 3MST that utilize L-cysteine,
L-Homocysteine, and 3-mercaptopyruvate (3MP) as substrates. CBS and CSE may generate H2S in
the cytosol whereas 3MST mainly resides and synthesizes H2S in mitochondria. A small portion
of endogenous H2S is derived via nonenzymatic reduction (dotted blue rectangle). In the pres-
ence of reducing equivalents such as NADPH and NADH, reactive sulfur species in persulfides,
thiosulfate, and polysulfides are reduced into H2S and other metabolites. Other sources of H2S
are represented by diet, bacterial activities, inhalation, irrigation, and drinking of sulfurous waters.
3MP, 3-mercaptopyruvate; 3MST, 3-mercaptopyruvate sulfurtransferase; CAT, cysteine aminotrans-
ferase; CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; H2S, hydrogen sulfide; NADH,
nicotinamide adenine dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate.

2.2. Hydrogen Sulfide Intracellular Signal Transduction Pathways

H2S can use a variety of signal transduction pathways for tuning its activities on
specific tissues and organs. H2S can modify the activity of several kinases, including p38
mitogen-activated protein kinase (MAPK), extracellular signal–regulated kinase (ERK),
and Akt signaling, by inhibiting or activating NF-κB nuclear translocation, resulting in
a variety of cellular responses such as proliferation, cell death, differentiation, and cell
cycle regulation. Indeed, H2S: (a) causes apoptosis stimulating ERK in human smooth
muscle cells [50] and P38-MAPK in pancreatic cells [51]; (b) impacts the survival of hu-
man polymorphonuclear cells [52]; (c) inhibits IL-8 secretion by IL-21/IL-23 stimulated
human keratinocytes [50,53,54]; (d) stimulates angiogenesis and vascular remodeling via
the PI3K/Akt/survivin pathway in vascular smooth muscle cells [55]; (e) blocks the nuclear
translocation of NF-κB, inhibiting a multitude of pro-inflammatory genes implicated in
heart ischemic/reperfusion damage [56]. Administration of GYY4137 to rats results in
potent anti-inflammatory effects through the decrease of the LPS-mediated upregulation of
liver transcription factors NF-κB and STAT-3 [57]. Furthermore, H2S increases the nuclear
localization of Nrf2 (a transcription factor that regulates the gene expression of several
antioxidants) and the phosphorylation of protein kinase Cε and STAT-3 in an in vivo model
of pharmacological preconditioning [58].

Cell signaling induced by H2S is otherwise necessary for mesenchymal stem cell
(MSC) proliferation and differentiation. In fact: (a) PKC/Erk-mediated Wnt/β-catenin
are required for bone differentiation [59,60]; (b) H2S decreases hypoxia-induced MSC
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apoptosis via PI3K/Akt, Erk1/2, and GSK-3β pathways [61–64]. Protein sulfhydration—
that probably has a role in inflammation and endoplasmic reticulum stress [65,66]—occurs
when H2S transforms cysteine residue -SH groups in specific proteins to hydropersulfide (-
SSH), thus boosting their activity [16,65]. Sulfhydration has been described in GAPDH [67],
KATP channels [65], p65 subunit of NF-κB [68], TRP calcium channel [59], and NFYB
protein [69] activation. It has been shown that sulfhydration of the p65 subunit of NF-
κB promotes macrophage survival, while a reduced sulfhydration of NF-κB promises
interesting applications in tumors [66,68]. A considerable scientific effort has currently
been made to understand the role of ion channels (K+, Cl−, and Ca2+) in H2S-dependent
signaling and in the regulatory processes that govern it [70]. H2S exerts its protective effects
against ischemia injury, hypertension, and apoptosis modulating inflammation, pain, and
cell death by engaging KATP channels [16]. Cl− channel, a cystic fibrosis transmembrane
conductance modulator, has been implicated in H2S-mediated cell defense against oxidative
stress in neuronal cells [71]. Moreover, evidence reveals that H2S targets L- and T-type Ca2+

channels, as well as TRP channels, for cardioprotection and inflammatory nociception [72],
and excitatory signaling in cholinergic neurons, thus inducing neurosecretion [73–75].

The biosynthetic pathway, that supports H2S production via CSE, has been also
involved in histone modifications, suggesting a role for H2S in epigenetically modulat-
ing inflammatory responses. Indeed, CSE knockout mice had higher levels of histone
demethylase JMJD3 and lower levels of H3K27 methylation, while secreting higher levels
of inflammatory cytokines IL-6 and IL-1. CSE has potent anti-inflammatory effects in
rheumatoid arthritis through inhibition of JMJD3 expression by modulating the transcrip-
tion factor Sp-1 [75]. Moreover, exogenous H2S decreased production of pro-inflammatory
cytokines in an in vitro cell model, inhibiting histone acetylation and leading to chromatin
remodeling [76,77]. However, even if histone acetylation and deacetylation alter chromatin
remodeling during T cell growth and differentiation, there is still little information on
HDAC and H2S in T cell functionality [78].

Currently, the pleiotropic activities of H2S, which apparently lack a common thread,
suggest that H2S should rather be viewed in terms of system biology as a complex modula-
tor of many molecular targets and their interactions.

3. H2S in T Cells

H2S-induced signaling plays an important functional role in T cell activation and
polarization [28,56,79]. Accordingly, CBS, CSE and 3-MST are all expressed, although
differentially, in T cell subsets and in naïve versus memory CD8+ T cells [56,80]. As observed
during T cell activation, CSE and CBS expression are increased in polarized T cells as
compared to naïve T cells, in which they seem virtually absent [81].

The effects of the exogenous H2S on T cell population appear to be closely related to
the concentration range used in in vitro and in vivo experiments.

Indeed, exogenous hydrogen sulfide, administered at high concentrations (millimo-
lar) causes caspase-independent/glutathione-dependent cell death in peripheral blood
lymphocytes (CD8+ T cells and NK cells). Surviving lymphocytes showed dramatically
reduced proliferation in response to mitogens and lower IL-2 production after 24 h of
exposure to H2S. These findings show that H2S inhibits the cellular cytotoxic response
and IL-2 production of peripheral blood lymphocytes, thus weakening primary players
of local inflammatory reactions [82]. On the contrary, when H2S is administered at low
concentrations (nanomolar/low micromolar), it increases T cell activation, and IL-2 produc-
tion in mice [56]. T cell activation and proliferation are significantly inhibited when CBS
or CSE expression are suppressed by siRNA, but restored by exogenous H2S. Hydrogen
sulfide also increases the capacity of T cells to create immunological synapses by reori-
enting the microtubule organizing center (MTOC) and promoting tubulin-dependent cell
polarization [56]. In summary, H2S promotes activation and proliferation of T cells with a
characteristic bell-shaped dose-response curve, with a maximum positive effect at nanomo-
lar concentrations and a toxic activity at higher concentrations (millimolar) [56]. This effect



Cells 2022, 11, 325 6 of 16

has been observed also in pathological conditions. Indeed, elevated concentrations of
H2S inhibit excessive activation and proliferation of lymphocytes in lupus erythematosus
patients [83]. Mechanistically, in activated T cells, CBS and CSE enzymes are inhibited by
thrombospondin-1 (TSP1) that, via CD47 binding, reduces MEK-dependent ERK signaling
thus counteracting the stimulatory effect of exogenous H2S donors [83].

Both innate and adaptive immunity rely on NF-κB [84]. It is known that H2S has
a pro-inflammatory role in sepsis, mediated by NF-κB activation and subsequent ele-
vation of transcription of NF-κB-dependent pro-inflammatory genes (IL-1, IL-6, TNF-α,
MCP-1, and MIP-2) [85]. On the contrary H2S can reverse cell senescence and the pro-
inflammatory impact of oxidative stress by boosting GSSH synthesis. Specifically, H2S
causes the dissociation of nuclear erythroid factor 2-related factor 2 (Nrf2) and Kelch-like
ECH-associated protein 1 (Keap1) via sulfhydration of Keap 1 at the Cys-151 residue and
the formation of a disulfide bond between Cys-288 and Cys-613 residues, allowing Nrf2
nuclear translocation and binding to AREs [86,87]. However, little is known on the role of
H2S-mediated activation of NF-κB or Nrf2 in T cells. In a lymphoblastic T cell line (CEM
cell line), the administration of NaHS induced a significant down-modulation of NF-κB and
HIF-1α expression, preventing their activities, and thus abrogating the downstream T cell
adenosinergic signaling following hypoxia induction [88–91]. Since hypoxia has immuno-
suppressive effects in tumors [92–94], these data suggest that H2S administration might
have beneficial effects in cancer, protecting T cell from hypoxia. Accordingly, it has been
reported that the H2S-releasing compound diallyl trisulfide (DATS) significantly increased
CD8+ T cells in mice models of melanoma, thus reducing the immunosuppressive activity
of myeloid-derived suppressor cells [95]. In addition, H2S produced by sulfate-reducing
bacteria increased the number of CD8+ T cells and the Th17 response in the mesenteric
lymph nodes of a colitis mouse model, as described below [96].

The members of the human protein tyrosine phosphatases (PTP) family, known to be
able to interfere with T cell signaling, are classified based on their structural and biochemical
characteristics. PTP22, PTPN2, PTPN11, DUSP2, and DUSP6 have been shown to influence
T cell subsets proliferation and function in an inflammatory bowel disease model [97–99].
Furthermore, it has been shown that various subsets of Th and Treg cells express varying
quantities of the PTP enzyme [100]. The majority of PTP show a conserved catalytic domain
that comprises a cysteine residue able to nucleophilic attack on a substrate. In some
isoforms, like PTP1B, this catalytic residue can also be sulfhydrated. Although H2S can
reversibly inactivate PTP1B, no data are available on the capacity of H2S to alter T cell
polarization, proliferation, or evidence of crosstalk with PTP signaling via PTP1B [101].

H2S acts as an autocrine or paracrine enhancer of T cell activation when generated
by activated T cells or when supplied exogenously (in the proper concentration range).
However, it should be noted that, at higher doses, H2S decreases T cell survival and function.
Therefore, to better clarify this topic, recent studies based on CBS or CSE knockout mice
have explored the impact of H2S on T-cell activation and differentiation.

In ovalbumin (OVA)-induced acute asthma murine model, CSE knockout mice showed
a worsening in allergen-induced airway hyperresponsiveness and developed acute asthma
with a severe airway inflammation, characterized by Th2-mediated immune response
cytokines. NaHS administration relieved asthma-related symptoms in CSE knockout mice,
and reduced cell infiltrates and the levels of IL-5, IL-13, and eotaxin-1 in bronchoalveolar
lavage fluid (BALF), indicating that H2S mediates a crucial protective role in the devel-
opment of airway inflammation [102]. These data suggest that H2S might be a negative
regulator of Th2-cell response.

Under baseline conditions, CSE knockout mice show no significant differences in
CD4+ T cells, while presenting an increase of CD8+ T cells and of IFN-γ-releasing Th1 cells.
During Mycobacterium tuberculosis (Mtb) infection, CSE knockout mice show a stronger
adaptive immune response increasing the number of Th1 cells, decreasing neutrophils, and
controlling Mtb growth in vivo [103]. Accordingly, it has been previously demonstrated
that even if in CBS knockout mice their CD4+ T cell number did not changed, they presented
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an increase of IFN-γ and IL-17 (but not IL-4) producing CD4+ T cells. Moreover, when Treg
cells were polarized to Th1, Th2 or Th17, CBS knockout Treg cells promoted Th1 and Th17,
but not Th2, differentiation [69]. It has been reported that CSE can control Th1 responses,
leading to immunological tolerance also in case of transplantation, although H2S was not
considered the main mediator [104]. In chicken models, the capacity of H2S to balance Th1
vs Th2 responses has been investigated. Several cytokines (IL-1, IL-4, IL-6, and TNF-α)
were upregulated by H2S inhalation, however IFN-γ was dramatically down-regulated.
H2S activity was detected both in untreated animals and in the presence of LPS, although it
was stronger in the presence of immunostimulants [105,106].

Similarly, H2S administration was reported to have positive effects in a model of
bleomycin-induced lung fibrosis: these responses were related to an increase in IL-4 pro-
duction and a decrease in IFN-γ expression, indicating a shift towards Th2 response [107].
The ability of the innate immune system to impact the adaptive immune response is
widely established.

Similarly, the soluble components of the tumor micro-environment and the cellular
elements (endothelial cells, mesenchymal stromal cells, Treg, antigen presenting cells
(APC), dendritic cells, myeloid-derived suppressor cells, natural killer lymphocytes) are
required for T cell immune response [108]. Since H2S appears to influence the oncogenic
and immunogenic features of tumor cells, as well as various classical and non-canonical
oncogenic signaling pathways [109,110], we checked for any data on the effects of H2S on
the crosstalk between T cells and innate immunity in cancer patients.

Inhibition of endogenous H2S generation has recently been shown to boost the ex-
pression of activating/co-stimulatory ligands on breast cancer cells and improve their
sensitivity to NK cell- and T cell-mediated immune responses [111]. Youness at al. demon-
strated that endogenous H2S primarily mediates its effects via the miR-155/NOS2/NO
axis. H2S suppresses the production of the NKG2D ligands MICA and ULBP2, reducing
NK cell cytotoxicity against H2S-producing tumor sites. Furthermore, H2S inhibits the
killing activity of chimeric antigen receptor transduction (CAR) T cells. This seems to
be mediated in part by the downregulation of co-stimulatory ligands (CD86 and 4-1BB
ligand) in H2S-producing tumor cells, which limits activation of cognate receptors on CAR
T cells [111]. These findings pave the way for proteome analyses in in vivo administered
H2S animal models [112]. H2S has been shown to activate a wide range of metabolic
pathways that lead to lung injury in pigs, resulting in a reduction in antigen presenting
ability, increased activation of the complement system, and mucus accumulation, which
may induce immune suppression and facilitate inflammation in the lungs [112].

Overall, although further research is needed in the field, these data suggest that H2S
plays a role in the crosstalk between T cells and innate immunity during
immunogenic reactions.

4. Role of H2S in Th17 Cells

Th17 cells have been widely investigated in various diseases, including inflammatory
bowel disease (IBD), colorectal tumors, autoimmune arthritis, psoriasis, hypoxia-induced
pulmonary hypertension, and ischemic brain injury (HBI) [112–117]. Altogether these
studies demonstrate that Th17 cells exert a role in the pathogenesis of inflammatory diseases,
while also having a beneficial role in maintaining health [118].

Physiologically, intestinal bacteria are required to maintain a Th17 response in the
mucosa [119–121]. However, increased Th17 cells and related cytokines (such as IL-17,
IL-21 and IL-22) are linked to inflammatory disease severity, such as in IBD patients [122].
The role of H2S in the context of innate immunity in the mucosa has been explored in a
colitis mouse model. Interestingly, it has been demonstrated that sulfate-reducing bacteria
(SRB), that produce H2S, potentiate the mucosal Th17 response [96]. Indeed, SRB coloniza-
tion enhanced the number of CD11b+, B, and T cells and boosted the formation and/or
activation of Th17 cells in the mucosal immune system, as confirmed by upregulation of
IL-6 and IL-17 by mesenteric lymph node cells in germ-free mice. Accordingly, H2S was
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demonstrated to influence type 2 immunity being a potent inducer of pro-inflammatory
Th17 cells and Tregs in the intestine [123].

The relative numbers of the three lymphocyte subsets Th1, Th2, and Th17 are imbal-
anced in HBI. Upon HBI T-cell activation shifted to a pro-inflammatory Th1 setting while
having no effect on the Th17 response [124]. While it is known that H2S levels and its
enzymes are dysregulated following HBI, it was only recently explored the hypothesis
that they may influence immune cell functions in neonatal mice, including local microglia
and infiltrating peripheral immune cells [125–127]. Increase of H2S levels was obtained
using L-Cysteine, a common substrate for its production [14,128]. H2S treatment inhibited
CD4+T cell infiltration while simultaneously dramatically lowering the fraction of Th1 cells
and increasing the Th17/Th2 ratio following HBI. These results suggest that L-Cysteine
exerts anti-inflammatory effects by increasing the shift of T cells to Th2 response [127]. It is
not clear whether L-Cysteine modulates only the recruitment of Th subpopulations and/or
Th polarization in the HBI context.

Th1 and Th17 cells can cooperate and promote the development of autoimmune
diseases [129]. Indeed, psoriasis was once thought to be a Th1-mediated skin disorder, but
the attention has recently switched to IL-17-producing cells, such as Th17 lymphocytes [130].
Interestingly, patients affected by psoriasis have significantly higher homocysteine (Hcy)
level in serum which is responsible for the pathologic stimulation of Th1 and Th17 cells [131].
Under physiological conditions, Hcy is metabolized to cysteine, which then produces H2S.
On the contrary, in pathological conditions, high levels of Hcy inhibit CSE activity and
reduce endogenous H2S generation. Accordingly, certain H2S donors have been reported
to suppress Hcy levels, limiting Th1 and Th17 overactivation in psoriasis [132,133].

Diet is a means to increase H2S bioavailability [134,135]. As an example, the main
biologically active molecules of garlic are amino acids, vitamins, micronutrients, and
organosulfur compounds (OSCs), the latter being able to raise endogenous H2S [135,136]. It
has been shown that pretreatment with a mixture containing dipropyl polysulfides (DPPS),
components of garlic [137], significantly mitigated Concanavalin A (ConA)-induced hep-
atitis in mice. DPPS pretreatment reduced inflammatory cytokines while increasing Treg
lymphocytes in the livers of ConA mice. DPPS demonstrated hepatoprotective bene-
fits in ConA-induced hepatitis, as evidenced by reduced inflammation and a shift in
the Th17/Treg balance in favor of Treg cells, implying possible applications of DPPS
mixtures in inflammatory immune-mediated liver disorders [138]. Furthermore, Diallyl
Trisulfide (DATS), an organosulfur molecule isolated from garlic bulbs, reduced inflamma-
tory cytokine production, and controlled immune function in a collagen-induced arthritis
mouse model. The suppression of the NF-κB and Wnt signaling pathways restored the
equilibrium between Th17 and Treg cells [139]. It is commonly acknowledged that an
imbalance in Th17/Treg levels is deleterious to RA. Adjustment of these imbalances may
reduce joint inflammation and improve disease prognosis, implying a role for DATS as
anti-arthritic drugs.

5. Role of H2S in Treg

T regulatory cells, commonly known as Tregs, play an important role in immuno-
logical homeostasis and self-tolerance. The presence of CD4, CD25, and FoxP3, a critical
transcription factor for Treg polarization, distinguishes naturally occurring Tregs (nTregs).
A subgroup of Treg cells exists in parallel to nTregs, named induced Tregs, (iTregs). Both
iTregs and nTregs regulate immunological activation in a number of ways, both directly and
indirectly. The capacity to direct Treg activities might represent an innovative strategy to
prevent/treat autoimmune diseases, improve transplant tolerance, and stimulate immune
activity against tumors [140–142]. Tregs express high levels of CBS and 3-MST but have a
low CSE expression [3,69]. Blocking CBS and CSE function in mice reduces the amount of
FoxP3+ Tregs, indicating that these enzymes play a role in the T cell polarization and/or
maintenance of Tregs [69]. CBS knockout mice have less Tregs, and the reduction of Tregs
cells is linked to immune cell infiltration and higher autoantibody production in different
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anatomical sites. H2S signaling promotes Treg hypomethylation, a crucial aspect of Treg
phenotype, by boosting the production of the ten-eleven translocation (Tet) molecules,
which are engaged in functional DNA demethylation. The sulfhydration of NFYB (nuclear
transcription factor Y subunit beta) was discovered to be crucial in this context and it
occurs probably via CSE-originated H2S or polysulfide compounds [69]. In a mesenchymal
stem cell (MSC)/T cell coculture model, the involvement of H2S in driving T cell polar-
ization towards Treg cells and in inhibiting Th17 cell polarization, was also established
in in vitro system [143]. MSCs stimulated T cell polarization to Tregs, but this activity
was reduced when CBS was knocked down. Pharmacological H2S treatment, by NaHS
administration, partially reversed this effect, indicating that H2S was essential to retain
immunomodulatory activity of MSC [143]. In an elegant recent study on M. tuberculosis
infection (Mtb), it has been reported that in the alveoli of CSE knockout mice the number of
Treg cells increased after infection [103]. Specifically, four weeks after infection, Treg cells
reached a higher level than wild type mice that, in turn, do not retain increased Treg cells
and, as a result, do not show an excessive Treg-mediated immune-regulation. These data
obtained in Mtb-infected wild type mice are consistent with previous ones showing that
high levels of H2S limit the release of pro-inflammatory molecules, including IL-1, IL-6,
TNF-α, NO, and mitochondrial-reactive oxygen intermediates, but promote the secretion
of the anti-inflammatory cytokine IL-10 [144–146]. Accordingly, in a model of colitis, H2S is
produced by SRB, which up-regulate Th17 and Treg cytokine profiles (IL-10 increase, IL-2
decrease) in T cells from the mesenteric lymph nodes [92].

Overall, while the evidence for a H2S role in Treg polarization is limited, it is suggested
that this gaseous mediator plays an essential, non-redundant role in the modulation of
adaptive immunity by stimulating Treg growth and activity (Figure 3).
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Figure 3. Adaptive immune response, H2S buffering activity. Hydrogen sulfide can restore the
equilibrium of Th and Treg cells. H2S is needed to develop appropriate Th-mediated immune
response promoting Th and Treg polarization and functions. In case of excessive Th1, Th2 or Th17
activation (unbalanced of immune response), as in immune-mediated diseases, H2S promotes Treg
proliferation (+) and inhibits (−) Th activity and expansion. However, when H2S reaches millimolar
doses, it has immunosuppressive activities impairing T cell proliferation and cytokine secretion.
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6. Conclusions

Interestingly, a number of studies found that sulfur-containing and releasing com-
pounds are important immunomodulators, particularly in the inflammatory T-dependent
response, that typified immune-mediated diseases, such as ischemic brain injury, hepati-
tis, psoriasis, and arthritis. While H2S has long been known to play a role in modifying
Th1/Th2 equilibrium, more recently, its effects on Th17, whose balance with Treg is crucial
for adaptive immunity, have begun to emerge. However, further studies are needed to
completely understand the role of H2S in the modulation of Th17/Treg responses, as well
as how sulfur-containing substances play a part in this process.

In this review, we have discussed the functional relevance of H2S as a T cell response
buffer, blunting both positive and negative T cell response imbalances. Specifically, when a
prompt Th response is required, it favors Th1 against Th2 response, coherently inhibiting
Th17 and promoting Treg polarization, which limit the immune response. Accordingly,
when T cell activity is dysregulated, like in Th1 and Th2-induced autoimmune disorders,
exogenous H2S at physiological doses restores the Th response, rebalancing Th1 vs. Th2
subsets (Figure 4).
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