2,347 research outputs found
Homotopy Groups, Focal Points and Totally Geodesic Immersions
In this paper we consider on a complete Riemannian manifold an immersed
totally geodesic hypersurface \Si existing together with an immersed
submanifold without focal points. No curvature condition is needed. We
obtained several connectedness results relating the topologies of and \Si
which depend on the codimension of .Comment: 24 pages. To appear in Indiana University Mathematical Journa
A Framework for QoS-aware Execution of Workflows over the Cloud
The Cloud Computing paradigm is providing system architects with a new
powerful tool for building scalable applications. Clouds allow allocation of
resources on a "pay-as-you-go" model, so that additional resources can be
requested during peak loads and released after that. However, this flexibility
asks for appropriate dynamic reconfiguration strategies. In this paper we
describe SAVER (qoS-Aware workflows oVER the Cloud), a QoS-aware algorithm for
executing workflows involving Web Services hosted in a Cloud environment. SAVER
allows execution of arbitrary workflows subject to response time constraints.
SAVER uses a passive monitor to identify workload fluctuations based on the
observed system response time. The information collected by the monitor is used
by a planner component to identify the minimum number of instances of each Web
Service which should be allocated in order to satisfy the response time
constraint. SAVER uses a simple Queueing Network (QN) model to identify the
optimal resource allocation. Specifically, the QN model is used to identify
bottlenecks, and predict the system performance as Cloud resources are
allocated or released. The parameters used to evaluate the model are those
collected by the monitor, which means that SAVER does not require any
particular knowledge of the Web Services and workflows being executed. Our
approach has been validated through numerical simulations, whose results are
reported in this paper
A compositional method for reliability analysis of workflows affected by multiple failure modes
We focus on reliability analysis for systems designed as workflow based compositions of components. Components are characterized by their failure profiles, which take into account possible multiple failure modes. A compositional calculus is provided to evaluate the failure profile of a composite system, given failure profiles of the components. The calculus is described as a syntax-driven procedure that synthesizes a workflows failure profile. The method is viewed as a design-time aid that can help software engineers reason about systems reliability in the early stage of development. A simple case study is presented to illustrate the proposed approach
- …