12 research outputs found

    Identification of novel cyclin-dependent kinases interacting with the CKS1 protein of Arabidopsis

    No full text
    The SUC1/CKS1 proteins interact with cyclin-dependent kinases (CDKs) and play an essential, but yet not entirely resolved, role in the regulation of the cell cycle. With the Arabidopsis thaliana CKS1At: protein as bait in a two-hybrid screen. two novel Arabidopsis CDKs, Arath;CDKB1;2 and Arath;CDKB2;1, were isolated. A closely related homologue of Arath;CDKB2;1 was discovered in the databases and was nominated Arath;CDKB2;2. Transcript analysis of the five known Arath;CDKA and Arath;CDKB genes revealed that they all had the highest expression in flowers and cell suspensions. Differences in the expression patterns in roots, leaves and stems suggest unique roles for each CDK

    Auxin regulation of cell cycle and its role during lateral root initiation

    No full text
    The plant hormone auxin plays a crucial role in the upstream regulation of many processes, making the study of its action particularly interesting to understand plant development. In this review we will focus on the effects auxin exerts on cell cycle progression, more specifically, during the initiation of lateral roots. Auxin fulfils a dominant role in the initiation of a new lateral root primordium. How this occurs remains largely unknown. Here we try to integrate the classical auxin signalling mechanisms into recent findings on cell cycle regulation. How both signalling cascades are integrated appears to be complex and is far from understood. As a means to solve this problem we suggest the use of a lateral root-inducible system that allows investigation of the early signalling cascades initiated by auxin and leading to cell cycle activation

    B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana

    Get PDF
    Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle. In yeasts, only one CDK is sufficient to drive cells through the cell cycle, whereas higher eukaryotes developed a family of related CDKs. Curiously, plants contain a unique class of CDKs (B-type CDKs), whose function is still unclear. We show that the CDKB1;1 gene of Arabidopsis (Arabidopsis thaliana) is highly expressed in guard cells and stomatal precursor cells of cotyledons, suggesting a prominent role for B-type CDKs in stomatal development. In accordance, transgenic Arabidopsis plants with reduced B-type CDK activity had a decreased stomatal index because of an early block of meristemoid division and inhibition of satellite meristemoid formation. Many aberrant stomatal cells were observed, all of them blocked in the G2 phase of the cell cycle. Although division of stomatal precursors was inhibited, cells still acquired stomatal identity, illustrating that stomatal cell differentiation is independent of cellular and nuclear division

    Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana

    Get PDF
    To study the mechanisms behind auxin-induced cell division, lateral root initiation was used as a model system. By means of microarray analysis, genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the auxin/indole-3-acetic acid (AUX/IAA) signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation

    Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis

    No full text
    Cyclin-dependent kinase inhibitors, such as the mammalian p27(Kip1) protein, regulate correct cell cycle progression and the integration of developmental signals with the core cell cycle machinery. These inhibitors have been described in plants, but their function remains unresolved. We have isolated seven genes from Arabidopsis that encode proteins with distant sequence homology with p27(Kip1), designated Kip-related proteins (KRPs). The KRPs were characterized by their domain organization and transcript profiles. With the exception of KRP5, all presented the same cyclin-dependent kinase binding specificity. When overproduced, KRP2 dramatically inhibited cell cycle progression in leaf primordia cells without affecting the temporal pattern of cell division and differentiation. Mature transgenic leaves were serrated and consisted of enlarged cells. Although the ploidy levels in young leaves were unaffected, endoreduplication was suppressed in older leaves. We conclude that KRP2 exerts a plant growth inhibitory activity by reducing cell proliferation in leaves, but, in contrast to its mammalian counterparts, it may not control the timing of cell cycle exit and differentiation

    Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis

    No full text
    In plants, the developmental mechanisms that regulate the positioning of lateral organs along the primary root are currently unknown. We present evidence on how lateral root initiation is controlled in a spatiotemporal manner in the model plant Arabidopsis thaliana. First, lateral roots are spaced along the main axis in a regular left-right alternating pattern that correlates with gravity-induced waving and depends on AUX1, an auxin influx carrier essential for gravitropic response. Second, we found evidence that the priming of pericycle cells for lateral root initiation might take place in the basal meristem, correlating with elevated auxin sensitivity in this part of the root. This local auxin responsiveness oscillates with peaks of expression at regular intervals of 15 hours. Each peak in the auxin-reporter maximum correlates with the formation of a consecutive lateral root. Third, auxin signaling in the basal meristem triggers pericycle cells for lateral root initiation prior to the action of INDOLE-3-ACETIC ACID14 (SOLITARY ROOT)

    Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root

    No full text
    During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation

    Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root

    No full text
    During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation
    corecore