5 research outputs found

    Investigation about operational conditions for bio-oil and biochar production from sugarcane bagasse through simulation and application in pilot plant

    Get PDF
    Orientadores: Maria Regina Wolf Maciel, Rubens Maciel FilhoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia QuímicaResumo: Há uma incessante busca por alternativas aos combustíveis fósseis associados aos impactos ambientais, que sejam seguras, renováveis e limpas. Dentre os vários processos que têm sido estudados e alguns já desenvolvidos em escala piloto, a pirólise da biomassa, visando à produção de combustíveis líquidos (bio-óleo) e sólidos (biochar), tem recebido especial atenção pelos produtos que são formados e pela importância de mercado. Ressalta-se que o biochar possui ainda aplicações na área de compósitos e materiais. Dentro desse contexto, essa dissertação teve por objetivo investigar as condições operacionais para produção de bio-óleo e biochar, a partir de bagaço de cana-de-açúcar, por meio de simulações computacionais, comissionamento e estudos experimentais em planta piloto de processos termoquímicos. Para realizar todas essas etapas, o bagaço de cana-de-açúcar foi inicialmente caracterizado para identificação de seus componentes pelas análises elementar, imediata e bioquímica, além da análise termoquímica pela técnica de calorimetria exploratória diferencial (DSC). Esses dados e informações foram utilizados para realizar a simulação do processo pelo simulador comercial Aspen Plus® V8.6, para identificar as condições operacionais (temperaturas, pressão e teor de água) e seus impactos nas conversões dos produtos desejados. Após a simulação do processo, com a identificação das condições operacionais mais adequadas, foram realizados procedimentos de reinstalação e adaptação de uma planta piloto de gaseificação, localizada no LOPCA (Laboratório de Otimização de Processos e Controle Avançado)/FEQ/UNICAMP, contendo um reator de leito fluidizado, para possibilitar a ocorrência do processo de pirólise. A produção de bio-óleo foi comprovada pela análise elementar e FT-IR (Espectroscopia de Infravermelho com Transformada de Fourier) e o teor de água foi determinado por Karl Fischer. O biochar, outro produto de grande importância, muito conhecido como negro de fumo, também foi caracterizado por meio de análise elementar, assim como análises por Microscopia Eletrônica de Varredura (MEV) com Espectroscopia por Dispersão de Energia de Raios X (EDS), Difração de Raios X (DRX), Adsorção Física (ASAP/BET), para avaliação do tipo de material formado, correlacionando-o com as condições operacionais. Portanto, a adaptação proposta nessa dissertação foi realizada de forma eficiente. A intenção desse trabalho foi contribuir com a área de busca por combustíveis alternativos e renováveis, principalmente fazendo uso da matéria-prima bagaço de cana-de-açúcar, que é importante para o Brasil, mas que não tem sido considerado em pesquisas internacionais com a necessária intensidade por não ser matéria-prima abundante em países do Bloco Europeu, Estados Unidos e Japão, países com tradição em pesquisa neste assunto. Esta pesquisa permitiu identificar as condições operacionais mais favoráveis para desenvolver o processo de produção de bio-óleo e biochar em escala piloto: 500 - 600 °C, 3,1 a 3,5 kg/h de alimentação de bagaço de cana-de-açúcar e 25 - 28 L/min de vazão de ar para fluidização do leito. Já na simulação do processo de pirólise, conseguiu-se verificar que temperaturas mais amenas e pressões mais altas favorecem a produção de líquidos, e o contrário favorece a produção de gases. Como a planta piloto não dispõe de dispositivos para alterar a sua pressão, a temperatura foi considerada a variável mais significativa na distribuição dos produtos, além do tamanho de partículas da biomassa alimentada e seu teor de umidade, e a vazão de ar alimentado. Pesquisas como estas auxiliam no desenvolvimento de projetos de unidades com capacidades de produção maiores, com maiores produtividades e seletividade nos produtos desejadosAbstract: There is an incessant search for alternatives to fossil fuels associated with environmental impacts that have to be safe, renewable, and clean. Among the several processes that have been studied and some already developed in a pilot scale, pyrolysis of biomass, for the production of liquid fuels (bio-oil) and solids (biochar), has received special attention for its products and market importance. Note that biochar still has applications in the area of composites and materials. In this context, this dissertation aimed at investigating the operating conditions for the production of bio-oil and biochar from sugarcane bagasse by computational simulations, commissioning and experimental studies in a thermochemical processes pilot plant. To perform all these steps, the sugarcane bagasse was initially characterized to identify its components by ultimate, proximate and biochemical analyses, as well as the thermochemical analysis by differential scanning calorimetry (DSC). These data were used to perform the simulation of the process by the commercial simulator Aspen Plus® V8.6, to identify the operating conditions (temperature, pressure, and moisture content) and their impacts on the conversions of the desired products. After the simulation of the process, with the identification of the most adequate operating conditions, procedures were performed for the reinstallation and adaptation of a gasification pilot plant located at LOPCA (Laboratory of Process Optimization and Advanced Control)/FEQ/UNICAMP, containing a fluidized bed reactor, to enable the pyrolysis process to occur. The production of bio-oil was proved by elemental and FT-IR (Fourier Transform Infrared Spectroscopy) analysis and the water content was determined by Karl Fischer. Biochar, another product of great importance, also known as carbon black, was also characterized by means of elemental analysis, as well as analyzes by Scanning Electron Microscopy (SEM) with X-ray Energy Dispersion Spectroscopy (EDS), X-ray Diffraction (XRD), and Physical Adsorption (ASAP/BET), to evaluate the type of material formed, correlating it with the operational conditions. Therefore, the adaptation proposed in this dissertation was successfully performed. The intention of this work was to contribute to the search for alternative and renewable fuels, mainly by making use of the raw material sugarcane bagasse, which is important for Brazil, but which has not been considered in international research with the necessary intensity because this raw material is not abundant in countries of the European Bloc, United States and Japan, countries with a tradition in research in this subject. This research allowed to identify the most favorable operating conditions to develop the process of production of bio-oil and biochar in pilot scale: 500 - 600 °C, 3.1 to 3.5 kg/h of sugarcane bagasse feeding, and 25 - 28 L/min of air flow for bed fluidization. In the simulation of the pyrolysis process, it was possible to verify that milder temperatures and higher pressures favor the production of liquids, and the opposite favors the production of gases. Since the pilot plant does not have devices to change its pressure, the temperature was considered the most significant variable in the products distribution, besides the biomass particle size and its moisture content, and the air flow. This research assists the development of units projects with larger production capacities, with greater productivities and selectivity in the desired productsMestradoEngenharia QuímicaMestra em Engenharia Química2016/18546-8FAPES

    Comparison of complete extractive and azeotropic distillation processes for anhydrous ethanol production using aspen plus™ simulator

    No full text
    Performance of the extractive and azeotropic distillation processes using ethylene glycol and cyclohexane as solvents, respectively, for anhydrous ethanol production, were investigated using 02 RadFrac columns each and solvent recycling streams via simulation in Aspen Plus™ Simulator. Both operate at 1 atm, and feed flow rate equals to 100 kmol.h-1 (ethanol – 0.896 and water – 0.104 in mole fractions at the azeotropic point). The NRTL-RK was the model used for extractive and azeotropic distillations. The anhydrous ethanol purity from top of the 1st column of the extractive distillation (22 stages) was 99.50 % (on a mole basis) and water with 99.20 % of purity at the top of the 2nd column. On the other hand, in the azeotropic distillation, the 1st column (30 stages) had a bottom product of anhydrous ethanol purity of 99.99 % and water with 99.99 % of purity in the 2nd column, also at the bottom. Both processes produced anhydrous ethanol with a high-grade purity required by the standard norms ASTM D4806, EN 15376, and ANP 36. However, the extractive distillation spent 1,928.2 kW in the reboilers against 4,680.3 kW in the azeotropic distillation, demonstrating extractive distillation is the most economical option. Consequently, the energy consumption is an essential analysis for choosing the type of distillation, when an azeotropic mixture needs a good separation task. Finally, the extractive distillation demonstrated to be much more competitive than azeotropic distillation for this type of mixture although azeotropic distillation obtained a higher purity of anhydrous ethanol804348CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2016/18546-8; 2015/20630-4sem informaçãosem informaçã

    Sugarcane bagasse gasification : simulation and analysis of different operating parameters, fluidizing media, and gasifier types

    No full text
    Sugarcane bagasse gasification is a promising thermochemical process that converts this residue mainly into syngas, which may be applied to generate heat, electricity, and liquid fuels. However, little attention has been given to the study of bagasse gasification conditions that generate syngas for future production of liquid fuels and chemicals. Therefore, this work aimed at studying several sugarcane bagasse gasification scenarios in Aspen Plus (TM) to obtain syngas mixtures to be further conditioned for synthesis processes. The scenarios included the study of the influence of operational parameters (temperature, pressure, steam-to-biomass ratio S/B, and moisture content), fluidized bed configurations (bubbling and circulating), and gasifying media (steam and steam-O-2) on syngas composition and process performance. Among the operating parameters, temperature was crucial for higher H-2 and CO production, CO2 consumption, higher syngas lower heating value (LHV), and higher cold gas efficiency (CGE). Also, S/B was the only key factor to adjust the H-2/CO ratio. In the gasifier configuration analysis, circulating fluidized bed reactor was the most suitable gasifier in most assessed scenarios, since it led to higher H-2 and CO generation, lower CO2 and CH4 production, as well as higher H-2/CO, dry syngas flow rates, and CGEs. The use of oxygen as an oxidizing agent decreased H-2 content and increased CO concentration, and reduced syngas H-2/CO ratio, LHV, and CGE. The steam-blown circulating fluidized bed was advised for future synthesis processes, and its corresponding response surfaces for H-2/CO ratio and CGE were obtained122433445CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulonão temnão tem2016/18546-8; 2015/20630-

    Experimental study on sugarcane bagasse pyrolysis in a hermochemical processes pilot plant

    No full text
    This paper investigates the sugarcane bagasse pyrolysis for bio-oil and biochar production in a pilot plant that was designed to perform the gasification process. After some modifications of changing the temperature of fluidized bed reactor and the catalytic reforming reactor, the fast pyrolysis process was performed at 500–600 °C using a fluidized bed reactor (air flow rate: 20–70 L.min-1) under atmospheric pressure, with sugarcane bagasse feeding (2–3.5 kg.h-1) with particles size less than 1.18 mm. Fluidization tests were performed with air feed (oxidative pyrolysis), to guarantee the fluidization is occurring, finding that the minimum fluidization rate was 22 L.min-1 (minimum velocity of gas: 6.3 cm.s-1). The residence time was 7 seconds (ratio between empty reactor volume by fluidizing gas flow). The highest bio-oil yield of 7.43 wt. % was obtained at 500 °C, with a bagasse flow rate of 3.5 kg.h-1 and 25.93 L.min-1 of air flow rate, and this low yield can be explained by the inefficient heat exchanger used. On the other hand, biochar yield achieved 35.88 wt. % using a temperature of 570 °C, 3.1 kg.h-1 of bagasse flow rate, and 28.26 L.min-1 of air flow rate. Considering this pilot plant has never operated in a pyrolysis mode, these results demonstrate that pyrolysis can be applied to this pilot plant, being versatile for different types of processes with a great potential for biochar and bio-oil production besides the high gas production803742CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2016/18546-8; 2015/20630-4; 2017/18401-2sem informaçãosem informaçã

    PLLA synthesis and membrane production through rotary jet spinning process poly (L-lactic acid) synthesis and physico-chemical analysis

    No full text
    Poly (L-lactic acid) (PLLA) is a well-established polymer, which is widely used in a wide range of fields; however, it is a high cost material, presenting great difficulties for its purchase. Therefore, the present work proposes PLLA synthesis in the laboratory, as an alternative to turn this more feasible; its processing through rotary jet spinning to obtain fibrous membranes; its physico-chemical analyses for material characterization; and, in vitro cell viability analyses with osteoblasts and fibroblasts. Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), Energy Dispersive Spectroscopy (EDS), and Live/Dead® assays were the characterization analyzes of the obtained membrane. PLLA membranes had initial degradation at 200 °C, and none harmful chemical elements were present. In vitro test verified the compatibility of the membranes with two cell lines, indicating a possible and potential application of these membranes in the medical field71050345043COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã
    corecore