40 research outputs found

    Immunotherapy for pancreatic cancer: chasing the light at the end of the tunnel

    Get PDF
    Background Checkpoint blockade immunotherapy has had a significant impact on the survival of a subset of patients with advanced cancers. It has been particularly effective in immunogenic cancer types that present large numbers of somatic mutations in their genomes. To date, all conventional immunotherapies have failed to produce significant clinical benefits for patients diagnosed with pancreatic cancer, probably due to its poor immunogenic properties, including low numbers of neoantigens and highly immune-suppressive microenvironments. Conclusions Herein, we discuss advances that have recently been made in cancer immunotherapy and the potential of this field to deliver effective treatment options for pancreatic cancer patients. Preclinical investigations, combining different types of therapies, highlight possibilities to enhance anti-tumor immunity and to generate meaningful clinical responses in pancreatic cancer patients. Results from completed and ongoing (pre)clinical trials are discussed.Surgical oncolog

    The potential of induced pluripotent stem cells to advance the treatment of pancreatic ductal adenocarcinoma

    Get PDF
    Simple Summary:& nbsp;Despite improvements in the treatment of several cancer types, the extremely poor prognosis of pancreatic cancer patients has remained unchanged over the last decades. Therefore, new therapeutic regimens for pancreatic cancer are highly needed. In this review, we will discuss the potential of induced pluripotent stem cells (iPSCs) to generate representative pancreatic cancer models that can aid the development of novel diagnostics and therapeutic strategies. Furthermore, the potential of iPSCs as pancreatic cancer vaccines or as a basis for cellular therapies will be discussed. With promising preclinical results and ongoing clinical trials, the potential of iPSCs to further the treatment of pancreatic cancer is being explored and, in turn, will hopefully provide additional therapies to increase the poor survival rates of this patient population.Advances in the treatment of pancreatic ductal adenocarcinoma (PDAC) using neoadjuvant chemoradiotherapy, chemotherapy, and immunotherapy have had minimal impact on the overall survival of patients. A general lack of immunogenic features and a complex tumor microenvironment (TME) are likely culprits for therapy refractoriness in PDAC. Induced pluripotent stem cells (iPSCs) should be explored as a means to advance the treatment options for PDAC, by providing representative in vitro models of pancreatic cancer development. In addition, iPSCs could be used for tailor-made cellular immunotherapies or as a source of tumor-associated antigens in the context of vaccination.Surgical oncolog

    The missing heritability of familial colorectal cancer

    Get PDF
    Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.MTG2 - Moleculaire genetica van gastrointestinale tumore

    Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression

    Get PDF
    Cancers may escape elimination by the host immune system by rewiring the tumour microenvironment towards an immune suppressive state. Transforming growth factor-β (TGF-β) is a secreted multifunctional cytokine that strongly regulates the activity of immune cells while, in parallel, can promote malignant features such as cancer cell invasion and migration, angiogenesis, and the emergence of cancer-associated fibroblasts. TGF-β is abundantly expressed in cancers and, most often, its abundance associated with poor clinical outcomes. Immunotherapeutic strategies, particularly T cell checkpoint blockade therapies, so far, only produce clinical benefit in a minority of cancer patients. The inhibition of TGF-β activity is a promising approach to increase the efficacy of T cell checkpoint blockade therapies. In this review, we briefly outline the immunoregulatory functions of TGF-β in physiological and malignant contexts. We then deliberate on how the therapeutic targeting of TGF-β may lead to a broadened applicability and success of state-of-the-art immunotherapies.Cancer Signaling networks and Molecular Therapeutic

    Visual cohort comparison for spatial single-cell omics-data

    Get PDF
    Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Mismatch repair deficiency is rare in bone and soft tissue tumors

    Get PDF
    Introduction There has been an increased demand for mismatch repair (MMR) status testing in sarcoma patients after the success of immune checkpoint inhibition (ICI) in MMR deficient tumors. However, data on MMR deficiency in bone and soft tissue tumors is sparse, rendering it unclear if routine screening should be applied. Hence, we aimed to study the frequency of MMR deficiency in bone and soft tissue tumors after we were prompted by two (potential) Lynch syndrome patients developing sarcomas.Methods Immunohistochemical expression of MLH1, PMS2, MSH2 and MSH6 was assessed on tissue micro arrays (TMAs), and included 353 bone and 539 soft tissue tumors. Molecular data was either retrieved from reports or microsatellite instability (MSI) analysis was performed. In MLH1 negative cases, additional MLH1 promoter hypermethylation analysis followed. Furthermore, a systematic literature review on MMR deficiency in bone and soft tissue tumors was conducted.Results Eight MMR deficient tumors were identified (1%), which included four leiomyosarcoma, two rhabdomyosarcoma, one malignant peripheral nerve sheath tumor and one radiation-associated sarcoma. Three patients were suspected for Lynch syndrome. Literature review revealed 30 MMR deficient sarcomas, of which 33% were undifferentiated/unclassifiable sarcomas. 57% of the patients were genetically predisposed.Conclusion MMR deficiency is rare in bone and soft tissue tumors. Screening focusing on tumors with myogenic differentiation, undifferentiated/unclassifiable sarcomas and in patients with a genetic predisposition / co-occurrence of other malignancies can be helpful in identifying patients potentially eligible for ICI.Molecular tumour pathology - and tumour geneticsMTG

    Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis

    Get PDF
    ObjectiveBiological insights into the stepwise development and progression of colorectal cancer (CRC) are imperative to develop tailored approaches for early detection and optimal clinical management of this disease. Here, we aimed to dissect the transcriptional and immunologic alterations that accompany malignant transformation in CRC and to identify clinically relevant biomarkers through spatial profiling of pT1 CRC samples. DesignWe employed digital spatial profiling (GeoMx) on eight pT1 CRCs to study gene expression in the epithelial and stromal segments across regions of distinct histology, including normal mucosa, low-grade and high-grade dysplasia and cancer. Consecutive histology sections were profiled by imaging mass cytometry to reveal immune contextures. Finally, publicly available single-cell RNA-sequencing data was analysed to determine the cellular origin of relevant transcripts. ResultsComparison of gene expression between regions within pT1 CRC samples identified differentially expressed genes in the epithelium (n=1394 genes) and the stromal segments (n=1145 genes) across distinct histologies. Pathway analysis identified an early onset of inflammatory responses during malignant transformation, typified by upregulation of gene signatures such as innate immune sensing. We detected increased infiltration of myeloid cells and a shift in macrophage populations from pro-inflammatory HLA-DR(+)CD204(-) macrophages to HLA-DR(-)CD204(+) immune-suppressive subsets from normal tissue through dysplasia to cancer, accompanied by the upregulation of the CD47/SIRP alpha 'don't eat me signal'. ConclusionSpatial profiling revealed the molecular and immunological landscape of CRC tumourigenesis at early disease stage. We identified biomarkers with strong association with disease progression as well as targetable immune processes that are exploitable in a clinical setting.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    A 34-marker panel for imaging mass cytometric analysis of human snap-frozen tissue

    Get PDF
    Imaging mass cytometry (IMC) is able to quantify the expression of dozens of markers at sub-cellular resolution on a single tissue section by combining a novel laser ablation system with mass cytometry. As such, it allows us to gain spatial information and antigen quantificationin situ, and can be applied to both snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tissue sections. Herein, we have developed and optimized the immunodetection conditions for a 34-antibody panel for use on human snap-frozen tissue sections. For this, we tested the performance of 80 antibodies. Moreover, we compared tissue drying times, fixation procedures and antibody incubation conditions. We observed that variations in the drying times of tissue sections had little impact on the quality of the images. Fixation with methanol for 5 min at -20 degrees C or 1% paraformaldehyde (PFA) for 5 min at room temperature followed by methanol for 5 min at -20 degrees C were superior to fixation with acetone or PFA only. Finally, we observed that antibody incubation overnight at 4 degrees C yielded more consistent results as compared to staining at room temperature for 5 h. Finally, we used the optimized method for staining of human fetal and adult intestinal tissue samples. We present the tissue architecture and spatial distribution of the stromal cells and immune cells in these samples visualizing blood vessels, the epithelium and lamina propria based on the expression of alpha-smooth muscle actin (alpha-SMA), E-Cadherin and Vimentin, while simultaneously revealing the colocalization of T cells, innate lymphoid cells (ILCs), and various myeloid cell subsets in the lamina propria of the human fetal intestine. We expect that this work can aid the scientific community who wish to improve IMC data quality.Stem cells & developmental biolog

    High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity

    Get PDF
    Objective A comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC.Design Thirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC. Additionally, functional, transcriptional and spatial analyses of tumour-infiltrating lymphocytes were performed by flow cytometry, single-cell RNA-sequencing and multispectral immunofluorescence.Results We discovered that a previously unappreciated innate lymphocyte population (Lin(-)CD7+(C)D127(-)CD56(+)CD45RO(+)) was enriched in CRC tissues and displayed cytotoxic activity. This subset demonstrated a tissue-resident (CD103(+)CD69(+)) phenotype and was most abundant in immunogenic mismatch repair (MMR)-deficient CRCs. Their presence in tumours was correlated with the infiltration of tumour-resident cytotoxic, helper and gamma delta T cells with highly similar activated (HLA-DR(+)CD38(+)PD(-)1(+)) phenotypes. Remarkably, activated gamma delta T cells were almost exclusively found in MMR-deficient cancers. Non-activated counterparts of tumour-resident cytotoxic and gamma delta T cells were present in CRC and healthy mucosa tissues, but not in lymph nodes, with the exception of tumour-positive lymph nodes.Conclusion This work provides a blueprint for the understanding of the heterogeneous and intricate immune landscape of CRC, including the identification of previously unappreciated immune cell subsets. The concomitant presence of tumour-resident innate and adaptive immune cell populations suggests a multitargeted exploitation of their antitumour properties in a therapeutic setting.Surgical oncolog

    Cancer-associated fibroblasts are key determinants of cancer cell Invasion in the earliest stage of colorectal cancer

    Get PDF
    BACKGROUND & AIMS: Improving clinical management of early stage colorectal cancers (T1CRCs) requires a better understanding of their underlying biology. Accumulating evidence shows that cancer-associated fibroblasts (CAFs) are important determinants of tumor progression in advanced colorectal cancer (CRC), but their role in the initial stages of CRC tumorigenesis is unknown. Therefore, we investigated the contribution of T1CAFs to early CRC progression. METHODS: Primary T1CAFs and patient-matched normal fibroblasts (NFs) were isolated from endoscopic biopsy specimens of histologically confirmed T1CRCs and normal mucosa, respectively. The impact of T1CAFs and NFs on tumor behavior was studied using 3-dimensional co-culture systems with primary T1CRC organoids and extracellular matrix (ECM) remodeling assays. Whole-transcriptome sequencing and gene silencing were used to pinpoint mediators of T1CAF functions. RESULTS: In 3-dimensional multicellular cultures, matrix invasion of T1CRC organoids was induced by T1CAFs, but not by matched NFs. Enhanced T1CRC invasion was accompanied by T1CAF-induced ECM remodeling and up-regulation of CD44 in epithelial cells. RNA sequencing of 10 NF-T1CAF pairs revealed 404 differentially expressed genes, with significant enrichment for ECM-related pathways in T1CAFs. Cathepsin H, a cysteine-type protease that was specifically up-regulated in T1CAFs but not in fibroblasts from premalignant lesions or advanced CRCs, was identified as a key factor driving matrix remodeling by T1CAFs. Finally, we showed high abundance of cathepsin H-expressing T1CAFs at the invasive front of primary T1CRC sections. CONCLUSIONS: Already in the earliest stage of CRC, cancer cell invasion is promoted by CAFs via direct interactions with epithelial cancer cells and stage-specific, cathepsin H-dependent ECM remodeling. RNA sequencing data of the 10 NF-T1CAF pairs can be found under GEO accession number GSE200660.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
    corecore