2,153 research outputs found
eleanor: An open-source tool for extracting light curves from the TESS Full-Frame Images
During its two year prime mission the Transiting Exoplanet Survey Satellite
(TESS) will perform a time-series photometric survey covering over 80% of the
sky. This survey comprises observations of 26 24 x 96 degree sectors that are
each monitored continuously for approximately 27 days. The main goal of TESS is
to find transiting planets around 200,000 pre-selected stars for which fixed
aperture photometry is recorded every two minutes. However, TESS is also
recording and delivering Full-Frame Images (FFIs) of each detector at a 30
minute cadence. We have created an open-source tool, eleanor, to produce light
curves for objects in the TESS FFIs. Here, we describe the methods used in
eleanor to produce light curves that are optimized for planet searches. The
tool performs background subtraction, aperture and PSF photometry,
decorrelation of instrument systematics, and cotrending using principal
component analysis. We recover known transiting exoplanets in the FFIs to
validate the pipeline and perform a limited search for new planet candidates in
Sector 1. Our tests indicate that eleanor produces light curves with
significantly less scatter than other tools that have been used in the
literature. Cadence-stacked images, and raw and detrended eleanor light curves
for each analyzed star will be hosted on MAST, with planet candidates on
ExoFOP-TESS as Community TESS Objects of Interest (CTOIs). This work confirms
the promise that the TESS FFIs will enable the detection of thousands of new
exoplanets and a broad range of time domain astrophysics.Comment: 21 pages, 13 figures, 2 tables, Accepted to PAS
Carbon turnover in the water-soluble protein of the adult human lens.
PurposeHuman eye lenses contain cells that persist from embryonic development. These unique, highly specialized fiber cells located at the core (nucleus) of the lens undergo pseudo-apoptosis to become devoid of cell nuclei and most organelles. Ostensibly lacking in protein transcriptional capabilities, it is currently believed that these nuclear fiber cells owe their extreme longevity to the perseverance of highly stable and densely packed crystallin proteins. Maintaining the structural and functional integrity of lenticular proteins is necessary to sustain cellular transparency and proper vision, yet the means by which the lens actually copes with a lifetime of oxidative stress, seemingly without any capacity for protein turnover and repair, is not completely understood. Although many years of research have been predicated upon the assumption that there is no protein turnover or renewal in nuclear fiber cells, we investigated whether or not different protein fractions possess protein of different ages by using the (14)C bomb pulse.MethodsAdult human lenses were concentrically dissected by gently removing the cell layers in water or shaving to the nucleus with a curved micrometer-controlled blade. The cells were lysed, and the proteins were separated into water-soluble and water-insoluble fractions. The small molecules were removed using 3 kDa spin filters. The (14)C/C was measured in paired protein fractions by accelerator mass spectrometry, and an average age for the material within the sample was assigned using the (14)C bomb pulse.ResultsThe water-insoluble fractions possessed (14)C/C ratios consistent with the age of the cells. In all cases, the water-soluble fractions contained carbon that was younger than the paired water-insoluble fraction.ConclusionsAs the first direct evidence of carbon turnover in protein from adult human nuclear fiber cells, this discovery supports the emerging view of the lens nucleus as a dynamic system capable of maintaining homeostasis in part due to intricate protein transport mechanisms and possibly protein repair. This finding implies that the lens plays an active role in the aversion of age-related nuclear (ARN) cataract
Implementation of PRRSV status classification system in swine breeding herds from a large integrated group in Spain
Background: Porcine Reproductive and Respiratory Syndrome (PRRS) is an endemic swine disease causing significant productive and economic losses. Knowledge of PRRS epidemiology is crucial to develop control strategies against this disease. In that regard, classifying farms according to PRRS virus (PRRSV) shedding and exposure, and understanding key drivers of change in status over time, provides great applied knowledge for developing disease control programs. In most European countries, PRRSV monitoring is performed most frequently at the individual farm level although criteria selected for monitoring varies among different regions and farms. The aim of this study was to implement a systematic monitoring program for PRRSV in Spanish sow farms. Breeding herds were classified according to a standardized PRRSV infection status using sampling programs and terminology currently adopted in the United States (US), which allowed an evaluation of PRRSV epidemiology in a large integrated Spanish group during a one-year study period (February 2017–March 2018).
Results: Fifteen farms achieved a stable PRRSV status after the first 4 consecutive samplings and 20 farms were classified as unstable. One of the farms maintained a stable status throughout the duration of the whole monitoring period.
Among the 20 farms classified as unstable at the beginning of the monitoring protocol, 9 farms (45%) never reached the stable status and 11 farms (55%) reached stable status afterwards during the monitoring study period.
From PRRSV PCR positive pools, there were 47 different PRRSV nucleotide sequences from 24 different farms. More than one PRRSV sequence was obtained from 15 farms. In the farms with more than one sequence detected, we observed recirculation of the same PRRSV field strain in 7 farms and introduction of a different PRRSV strain in 5 farms and both events in 3 farms.
Conclusions: Systematic monitoring for PRRSV in breeding herds established a basis of knowledge of PRRSV epidemiology at the farm level and provided key data to classify farms according to PRRSV exposure and shedding status. These data allow further evaluation of the impact of the PRRSV farm status on production and economic performance in breeding herds and additional investigation of factors related to PRRSV epidemiology
Efficacy of Terramycin® 200 for Fish (Oxytetracycline Dihydrate) for the Skeletal Marking of Rainbow Trout
In 2009, we conducted a study to evaluate the efficacy of Terramycin® 200 for Fish (TM200; 44.1% active oxytetracycline dihydrate) administered in feed at a target dosage of 3.75 g/100 lbs fish/day for 10 days for the skeletal (fluorescent) marking of fingerling rainbow trout (Oncorhynchus mykiss). The in-life phase of the study was conducted indoors at a mean water temperature of 10.3 ºC and comprised a 1-day acclimation period (no feed administered), 10-day treatment period (TM200-treated feed fed to six treated tanks; nontreated control feed fed to three control tanks), and 22-day post-treatment period (control feed administered to all tanks). At the end of the posttreatment period, all fish were collected and individually frozen. One month later, all fish were thawed, and two vertebrae were extracted from each fish. Each vertebra extracted was cleaned and then evaluated under ultraviolet light and a dissecting scope for the presence and quality of a fluorescent mark. All vertebrae extracted from TM200-treated fish (n = 120) had clearly visible marks, whereas no vertebrae extracted from control fish (n = 60) were marked. Consequently, in this study, TM200 administered in feed at a target dosage of 3.75 g OTC/100 lbs fish/d for 10 day was effective for the skeletal (fluorescent) marking of fingerling rainbow trout. Results will be used to support a U.S. approval of an expanded skeletal marking claim for TM200
Electronic and Geometric Corrugation of Periodically Rippled, Self-nanostructured Graphene Epitaxially Grown on Ru(0001)
Graphene epitaxially grown on Ru(0001) displays a remarkably ordered pattern
of hills and valleys in Scanning Tunneling Microscopy (STM) images. To which
extent the observed "ripples" are structural or electronic in origin have been
much disputed recently. A combination of ultrahigh resolution STM images and
Helium Atom diffraction data shows that i) the graphene lattice is rotated with
respect to the lattice of Ru and ii) the structural corrugation as determined
from He diffraction is substantially smaller (0.015 nm) than predicted (0.15
nm) or reported from X-Ray Diffraction or Low Energy Electron Diffraction. The
electronic corrugation, on the contrary, is strong enough to invert the
contrast between hills and valleys above +2.6 V as new, spatially localized
electronic states enter the energy window of the STM. The large electronic
corrugation results in a nanostructured periodic landscape of electron and
holes pockets.Comment: 16 pages, 6 figure
Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors
BACKGROUND: The fetal cortical neuroepithelium is a mosaic of distinct progenitor populations that elaborate diverse cellular fates. Ethanol induces apoptosis and interferes with the survival of differentiating neurons. However, we know little about ethanol's effects on neuronal progenitors. We therefore exposed neurosphere cultures from fetal rat cerebral cortex, to varying ethanol concentrations, to examine the impact of ethanol on stem cell fate. RESULTS: Ethanol promoted cell cycle progression, increased neurosphere number and increased diversity in neurosphere size, without inducing apoptosis. Unlike controls, dissociated cortical progenitors exposed to ethanol exhibited morphological evidence for asymmetric cell division, and cells derived from ethanol pre-treated neurospheres exhibited decreased proliferation capacity. Ethanol significantly reduced the numbers of cells expressing the stem cell markers CD117, CD133, Sca-1 and ABCG2, without decreasing nestin expression. Furthermore, ethanol-induced neurosphere proliferation was not accompanied by a commensurate increase in telomerase activity. Finally, cells derived from ethanol-pretreated neurospheres exhibited decreased differentiation in response to retinoic acid. CONCLUSION: The reduction in stem cell number along with a transient ethanol-driven increase in cell proliferation, suggests that ethanol promotes stem to blast cell maturation, ultimately depleting the reserve proliferation capacity of neuroepithelial cells. However, the lack of a concomitant change in telomerase activity suggests that neuroepithelial maturation is accompanied by an increased potential for genomic instability. Finally, the cellular phenotype that emerges from ethanol pre-treated, stem cell depleted neurospheres is refractory to additional differentiation stimuli, suggesting that ethanol exposure ablates or delays subsequent neuronal differentiation
Effect of PRRSV stability on productive parameters in breeding herds of a swine large integrated group in Spain
Background In breeding herds, porcine reproductive and respiratory syndrome (PRRS) clinically manifests as increased abortions, number of stillbirths, and pre-weaning mortality, and as a direct consequence, results in a decrease of the number of piglets weaned per sow per year. Breeding farm classification according the PRRS virus (PRRSV) status (unstable or stable) is a key control strategy for this disease. The aim of this study was to evaluate the production improvement related to achieving a PRRSV stable status in breeding herds in Spain. For this purpose, epidemiological and productivity data were collected from a systematic PRRSV monitoring program in 35 breeding herds from a large integrated swine group in Spain. A comparative statistical analysis was conducted using four key production indicators (KPI) between different PRRSV status and a generalized linear mixed model: weekly abortions/1000 sows (ABTHS), born-alive rate (BAR), pre-weaning mortality rate (PWMR), and number of weaned piglets per 1000 sows (WPTHS).
Results From the 35 monitored farms during a total period of 58 weeks, we collected 49 to 58 weeks of production data and PRRSV classification status for each study farm. This represented a total of 1997 (741 unstable and 1256 stable) weekly data collected that was eligible for the KPI comparative study. PRRSV stability was associated with significant improvement in BAR (+ 1.10 %, p \u3c 0.001), PWMR (-0.88 %, p \u3c 0.002) and WPTHS (+ 24.52, p \u3c 0.0001).
Conclusions These results demonstrate for the first time the improved production due to achieving PRRSV stability in breeding herds under field conditions in a European country. Increased number of born-alive piglets and a reduction of piglet pre-weaning mortality represents an increase of 1.28 weaned piglets per sow per year if PRRSV stability was achieved and maintained for one-year period in a breeding farm
Thoracic Aortic Calcium Versus Coronary Artery Calcium for the Prediction of Coronary Heart Disease and Cardiovascular Disease Events
ObjectivesThis study compared the ability of coronary artery calcium (CAC) and thoracic aortic calcium (TAC) to predict coronary heart disease (CHD) and cardiovascular disease (CVD) events.BackgroundCoronary artery calcium has been shown to strongly predict CHD and CVD events, but it is unknown whether TAC, also measured within a single cardiac computed tomography (CT) scan, is of further value in predicting events.MethodsA total of 2,303 asymptomatic adults (mean age 55.7 years, 38% female) with CT scans were followed up for 4.4 years for CHD (myocardial infarction, cardiac death, or late revascularizations) and CVD (CHD plus stroke). Cox regression, adjusted for Framingham risk score (FRS), examined the relation of Agatston CAC and TAC categories, and log-transformed CAC and TAC with the incidence of CHD and CVD events and receiver-operator characteristic (ROC) curves tested whether TAC improved prediction of events over CAC and FRS.ResultsA total of 53% of subjects had Agatston CAC scores of 0; 8% 1 to 9; 19% 10 to 99; 12% 100 to 399; and 8% ≥400. For TAC, proportions were 69%, 5%, 12%, 8%, and 7%, respectively; 41 subjects (1.8%) experienced CHD and 47 (2.0%) CVD events. The FRS-adjusted hazard ratios (HR) across increasing CAC groups (relative to <10) ranged from 3.7 (p = 0.04) to 19.6 (p < 0.001) for CHD and from 2.8 (p = 0.07) to 13.1 (p < 0.001) for CVD events; only TAC scores of 100 to 399 predicted CHD and CVD (HR: 3.0, p = 0.008, and HR: 2.3, p = 0.04, respectively); these risks were attenuated after accounting for CAC. Findings were consistent when using log-transformed CAC and TAC Agatston and volume scores. The ROC curve analyses showed CAC predicted CHD and CVD events over FRS alone (p < 0.01); however, TAC did not further add to predicting events over FRS or CAC.ConclusionsThis study found that CAC, but not TAC, is strongly related to CHD and CVD events. Moreover, TAC does not further improve event prediction over CAC
Crystal Field Triplets: A New Route to Non-Fermi Liquid Physics
A model for crystal field triplet ground states on rare earth or actinide
ions with dipolar and quadrupolar couplings to conduction electrons is studied
for the first time with renormalization group methods. The quadrupolar coupling
leads to a new nontrivial, non-Fermi liquid fixed point, which survives in an
intermediate valence Anderson model. The calculated magnetic susceptibility
displays one parameter scaling, going as ()
at intermediate temperatures, reminiscent of the non-Fermi liquid alloy
UCu_{5-x}Pd_x.Comment: 4 pages, 3 figures, REVTe
- …