443 research outputs found

    Investigating dimensional and geometrical accuracy of isothermally forged blades

    Get PDF
    Compressor blades are one of the well-known products made of titanium alloys. They are usually manufactured by a forging process followed by a sequence of machining processes. Precision forging eliminates a considerable amount of machining; however, due to the close tolerances, the process should be designed in a manner to meet dimensional and geometrical tolerances as well as the desired mechanical and metallurgical properties. In this paper, effects of two main process parameters, the process temperature and strain rate, on the dimensional and geometrical accuracy of the isothermally forged blades are investigated experimentally. The results are analyzed by the response surface method (RSM). In order to justify the results and have a tool for further studies, a coupled thermo-mechanical finite element method model is developed and verified by the experimental results. The results show that the process temperature and pressing speed and their interaction have a meaningful effect on the thickness error; however, the interaction effect of the process temperature and pressing speed on the twist error is not considerable and moreover the bow error of the forged blades is not significant. Finally, the results show that for a given geometry, by selection of appropriate process parameters, a sound workpiece with acceptable dimensional and geometrical aspects can be manufactured without any need for a die shape compensation

    Modeling and Optimization of Next-Generation Wireless Access Networks

    Get PDF
    The ultimate goal of the next generation access networks is to provide all network users, whether they are fixed or mobile, indoor or outdoor, with high data rate connectivity, while ensuring a high quality of service. In order to realize this ambitious goal, delay, jitter, error rate and packet loss should be minimized: a goal that can only be achieved through integrating different technologies, including passive optical networks, 4th generation wireless networks, and femtocells, among others. This thesis focuses on medium access control and physical layers of future networks. In this regard, the first part of this thesis discusses techniques to improve the end-to-end quality of service in hybrid optical-wireless networks. In these hybrid networks, users are connected to a wireless base station that relays their data to the core network through an optical connection. Hence, by integrating wireless and optical parts of these networks, a smart scheduler can predict the incoming traffic to the optical network. The prediction data generated herein is then used to propose a traffic-aware dynamic bandwidth assignment algorithm for reducing the end-to-end delay. The second part of this thesis addresses the challenging problem of interference management in a two-tier macrocell/femtocell network. A high quality, high speed connection for indoor users is ensured only if the network has a high signal to noise ratio. A requirement that can be fulfilled with using femtocells in cellular networks. However, since femtocells generate harmful interference to macrocell users in proximity of them, careful analysis and realistic models should be developed to manage the introduced interference. Thus, a realistic model for femtocell interference outside suburban houses is proposed and several performance measures, e.g., signal to interference and noise ratio and outage probability are derived mathematically for further analysis. The quality of service of cellular networks can be degraded by several factors. For example, in industrial environments, simultaneous fading and strong impulsive noise significantly deteriorate the error rate performance. In the third part of this thesis, a technique to improve the bit error rate of orthogonal frequency division multiplexing systems in industrial environments is presented. This system is the most widely used technology in next-generation networks, and is very susceptible to impulsive noise, especially in fading channels. Mathematical analysis proves that the proposed method can effectively mitigate the degradation caused by impulsive noise and significantly improve signal to interference and noise ratio and bit error rate, even in frequency-selective fading channels

    Conditional quasi-exact solvability of the quantum planar pendulum and of its anti-isospectral hyperbolic counterpart

    Full text link
    We have subjected the planar pendulum eigenproblem to a symmetry analysis with the goal of explaining the relationship between its conditional quasi-exact solvability (C-QES) and the topology of its eigenenergy surfaces, established in our earlier work [Frontiers in Physical Chemistry and Chemical Physics 2, 1-16, (2014)]. The present analysis revealed that this relationship can be traced to the structure of the tridiagonal matrices representing the symmetry-adapted pendular Hamiltonian, as well as enabled us to identify many more -- forty in total to be exact -- analytic solutions. Furthermore, an analogous analysis of the hyperbolic counterpart of the planar pendulum, the Razavy problem, which was shown to be also C-QES [American Journal of Physics 48, 285 (1980)], confirmed that it is anti-isospectral with the pendular eigenproblem. Of key importance for both eigenproblems proved to be the topological index Îș\kappa, as it determines the loci of the intersections (genuine and avoided) of the eigenenergy surfaces spanned by the dimensionless interaction parameters η\eta and ζ\zeta. It also encapsulates the conditions under which analytic solutions to the two eigenproblems obtain and provides the number of analytic solutions. At a given Îș\kappa, the anti-isospectrality occurs for single states only (i.e., not for doublets), like C-QES holds solely for integer values of Îș\kappa, and only occurs for the lowest eigenvalues of the pendular and Razavy Hamiltonians, with the order of the eigenvalues reversed for the latter. For all other states, the pendular and Razavy spectra become in fact qualitatively different, as higher pendular states appear as doublets whereas all higher Razavy states are singlets
    • 

    corecore