231 research outputs found

    Detection of hidden structures for arbitrary scales in complex physical systems

    Get PDF
    Recent decades have experienced the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of contending atomic- and largerscale configurations. In order to obtain a more detailed understanding of such systems, we need tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method that applies to both static and dynamic systems which invokes ideas from network analysis and information theory. Our approach efficiently identifies basic unit cells, topological defects, and candidate natural structures. The method is particularly useful where a clear definition of order is lacking, and the identified features may constitute a natural point of departure for further analysis

    AlCoNiFeCrTiVx High-Entropy Coatings Prepared by Electron-Beam Cladding

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in "A. D. Pogrebnjak and O. Bondar (eds.), Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019), Springer Proceedings in Physics 240". The final authenticated version is available online at: https://doi.org/10.1007/978-981-15-1742-6_16.This study reports the investigation of high-entropy coatings obtained by electron-beam cladding in a vacuum of Al-Co-Ni-Fe-Cr-Ti-Vx powder blend on a steel substrate. V was added to the Al-Co-Ni-Fe-Cr-Ti equiatomic system and the effects of this added element on structure, phase composition and microhardness of AlCoNiFeCrTiVx high entropy coatings resulted from electron beam cladding were studied. The AlCoNiFeCrTiV0 coatings consist of two solid solutions with BCC1 and BCC structure with different lattice parameters and a small volume fraction of σ-phase. It was shown that with an increase in V content from x = 0 to x = 1.5, the phase composition of the coatings transforms from two solid solutions to single BCC solid solution and σ-phases of different compositions. The σ-phase volume fraction increased with an increase in the V content. The addition of V to AlCoNiFeCrTi shows the strengthening effect of the AlCoNiFeCrTiV0.5–1.5 coatings and the Vickers hardness increased from 8.4 to 11 GPa. Microhardness of the coatings was affected by the sigma phase. The hardness enhancement can be likely attributed to the effect of solid solution strengthening and to the presence of σ-phase particles in the coating structure

    Spatially Resolved Distribution Function and the Medium-Range Order in Metallic Liquid and Glass

    Get PDF
    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu64.5Zr35.5 alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe “Bergman triacontahedron” packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals
    corecore