1,940 research outputs found

    Critical behavior in a cross-situational lexicon learning scenario

    Get PDF
    The associationist account for early word-learning is based on the co-occurrence between objects and words. Here we examine the performance of a simple associative learning algorithm for acquiring the referents of words in a cross-situational scenario affected by noise produced by out-of-context words. We find a critical value of the noise parameter γc\gamma_c above which learning is impossible. We use finite-size scaling to show that the sharpness of the transition persists across a region of order τ−1/2\tau^{-1/2} about γc\gamma_c, where τ\tau is the number of learning trials, as well as to obtain the learning error (scaling function) in the critical region. In addition, we show that the distribution of durations of periods when the learning error is zero is a power law with exponent -3/2 at the critical point

    First order transition and phase separation in pyrochlores with colossal-magnetoresistance

    Full text link
    Tl2_{2}Mn2_{2}O7_{7} pyrochlores present colossal magnetoresistance (CMR) around the long range ferromagnetic ordering temperature (TC_{C}). The character of this magnetic phase transition has been determined to be first order, by purely magnetic methods, in contrast to the second order character previously reported by Zhao et al. (Phys. Rev. Lett. 83, 219 (1999)). The highest CMR effect, as in Tl1.8_{1.8}Cd0.2_{0.2}Mn2_{2}O7_{7}, corresponds to a stronger first order character. This character implies a second type of magnetic interaction, besides the direct superexchange between the Mn4+^{4+} ions, as well as a phase coexistence. A model is proposed, with a complete Hamiltonian (including superexchange and an indirect interaction), which reproduce the observed phenomenology.Comment: 6 pages. Figures include

    Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network

    Full text link
    The present operation of the ground-based network of gravitational-wave laser interferometers in "enhanced" configuration brings the search for gravitational waves into a regime where detection is highly plausible. The development of techniques that allow us to discriminate a signal of astrophysical origin from instrumental artefacts in the interferometer data and to extract the full range of information are some of the primary goals of the current work. Here we report the details of a Bayesian approach to the problem of inference for gravitational wave observations using a network of instruments, for the computation of the Bayes factor between two hypotheses and the evaluation of the marginalised posterior density functions of the unknown model parameters. The numerical algorithm to tackle the notoriously difficult problem of the evaluation of large multi-dimensional integrals is based on a technique known as Nested Sampling, which provides an attractive alternative to more traditional Markov-chain Monte Carlo (MCMC) methods. We discuss the details of the implementation of this algorithm and its performance against a Gaussian model of the background noise, considering the specific case of the signal produced by the in-spiral of binary systems of black holes and/or neutron stars, although the method is completely general and can be applied to other classes of sources. We also demonstrate the utility of this approach by introducing a new coherence test to distinguish between the presence of a coherent signal of astrophysical origin in the data of multiple instruments and the presence of incoherent accidental artefacts, and the effects on the estimation of the source parameters as a function of the number of instruments in the network.Comment: 22 page

    Three-Dimensional Liquid-Vapor Interface Reconstruction from High-Speed Stereo Images during Pool Boiling

    Get PDF
    A technique for reconstruction of liquid-gas interfaces based on high-speed stereo-imaging is applied to the liquid-vapor interfaces formed above a heated surface during pool boiling. Template matching is used for determining the correspondence of local features of the liquid-vapor interfaces between the two camera views. A sampling grid is overlaid on the reference image, and windows centered at each sampled pixel are compared with windows centered along the epipolar line in the target image to obtain a correlation signal. The three-dimensional coordinates of each matched pixel are determined via triangulation, which yields the physical world representation of the liquid-vapor interface. Liquid-vapor interface reconstruction is demonstrated during pool boiling for a range of heat fluxes. Textured mushroom-like vapor bubbles that are fed by multiple nucleation sites are formed close to the heated surface. Analysis of the temporal attributes of the interface distinguishes the transition with increasing heat flux from a mode in which vapor is released from the surface as a continuous plume to one dominated by the occurrence of intermittent vapor bursts. A characteristic morphology of the vapor mushroom formed during vapor burst events is identified. This liquid-vapor interface reconstruction technique is a time-resolved, flexible and non-invasive alternative to existing methods for phase-distribution mapping, and can be combined with other opticalbased diagnostic tools, such as tomographic particle image velocimetry. Vapor flow morphology characterization during pool boiling at high heat fluxes can be used to inform vapor removal strategies that delay the occurrence of critical heat flux during pool boiling

    Evidence for magnetic clusters in BaCoO3_3

    Full text link
    Magnetic properties of the transition metal oxide BaCoO3_3 are analyzed on the basis of the experimental and theoretical literature available via ab inito calculations. These can be explained by assuming the material to be formed by noninteracting ferromagnetic clusters of about 1.2 nm in diameter separated by about 3 diameters. Above about 50 K, the so-called blocking temperature, superparamagnetic behavior of the magnetic clusters occurs and, above 250 K, paramagnetism sets in.Comment: 4 pages, 1 figur

    Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods

    Full text link
    Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a Delayed Rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings

    Universal bifurcation property of two- or higher-dimensional dissipative systems in parameter space: Why does 1D symbolic dynamics work so well?

    Full text link
    The universal bifurcation property of the H\'enon map in parameter space is studied with symbolic dynamics. The universal-LL region is defined to characterize the bifurcation universality. It is found that the universal-LL region for relative small LL is not restricted to very small bb values. These results show that it is also a universal phenomenon that universal sequences with short period can be found in many nonlinear dissipative systems.Comment: 10 pages, figures can be obtained from the author, will appeared in J. Phys.

    Short range ferromagnetism and spin glass state in Y0.7Ca0.3MnO3\mathrm{Y_{0.7}Ca_{0.3}MnO_{3}}

    Full text link
    Dynamic magnetic properties of Y0.7Ca0.3MnO3\mathrm{Y_{0.7}Ca_{0.3}MnO_{3}} are reported. The system appears to attain local ferromagnetic order at TSRF≈70T_{\mathrm{SRF}} \approx 70 K. Below this temperature the low field magnetization becomes history dependent, i.e. the zero field cooled (ZFC) and field cooled (FC) magnetization deviate from each other and closely logarithmic relaxation appears at our experimental time scales (0.3-10410^{4} sec). The zero field cooled magnetization has a maximum at Tf≈30T_{\mathrm{f}}\approx 30 K, whereas the field cooled magnetization continues to increase, although less sharply, also below this temperature. Surprisingly, the dynamics of the system shows non-equilibrium spin glass (SG) features not only below the maximum in the ZFC magnetization, but also in the temperature region between this maximum and TSRFT_{\mathrm{SRF}}. The aging and temperature cycling experiments show only quantitative differences in the dynamic behavior above and below the maximum in the ZFC-magnetization; similarly, memory effects are observed in both temperature regions. We attribute the high temperature behavior to the existence of clusters of short range ferromagnetic order below TSRFT_{\mathrm{SRF}}; the configuration evolves into a conventional spin glass state at temperatures below TfT_{\mathrm{f}}.Comment: REVTeX style; 8 pages, 8 figure
    • …
    corecore