64 research outputs found

    Genome-wide identification and characterization of tissue specific long non-coding RNAs and circular RNAs in common carp (Cyprinus carpio L.)

    Get PDF
    Cyprinus carpio is regarded as a substitute vertebrate fish model for zebrafish. A varied category of non-coding RNAs is comprised of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These ncRNAs were once considered non-functional “junk DNA” but research now shows they play important roles in gene expression regulation, chromatin modification, and epigenetic regulation. The systemic tissue-specific research of the lncRNAs and circRNAs of C. carpio is yet unexplored. A total of 468 raw RNA-Seq dataset across 28 distinct tissues from different varieties of common carp retrieved from public domain were pre-processing, mapped and assembled for lncRNA identification/ classification using various bioinformatics tools. A total of 33,990 lncRNAs were identified along with revelation of 9 miRNAs having 19 unique lncRNAs acting as their precursors. Additionally, 2,837 miRNAs were found to target 4,782 distinct lncRNAs in the lncRNA-miRNA-mRNA interaction network analysis, which resulted in the involvement of 3,718 mRNAs in common carp. A total of 22,854 circRNAs were identified tissue-wise across all the 28 tissues. Moreover, the examination of the circRNA-miRNA-mRNA interaction network revealed that 15,731 circRNAs were targeted by 5,906 distinct miRNAs, which in turn targeted 4,524 mRNAs in common carp. Significant signaling pathways like necroptosis, NOD-like receptor signaling pathway, hypertrophic cardiomyopathy, small cell lung cancer, MAPK signaling pathway, etc. were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The web resource of common carp ncRNAs, named CCncRNAdb and available at http://backlin.cabgrid.res.in/ccncrnadb/ gives a comprehensive information about common carp lncRNAs, circRNAs, and ceRNAs interactions, which can aid in investigating their functional roles for its management

    Probing the potential of bioactive compounds of millets as an inhibitor for lifestyle diseases: molecular docking and simulation-based approach

    Get PDF
    Millets are becoming more popular as a healthy substitute for people with lifestyle disorders. They offer dietary fiber, polyphenols, fatty acids, minerals, vitamins, protein, and antioxidants. The nutritional importance of millets leads to the present in-silico study of selective bioactive compounds docked against the targets of lifestyle diseases, viz., diabetes, hypertension, and atherosclerosis using molecular docking and molecular simulations approach. Pharmacokinetic analysis was also carried out to analyse ADME properties and toxicity analysis, drug-likeliness, and finally target prediction for new targets for uncharacterized compounds or secondary targets for recognized molecules by Swiss Target Prediction was also done. The docking results revealed that the bioactive compound flavan-4-ol, among all the 50 compounds studied, best docked to all the four targets of lifestyle diseases, viz., Human dipeptidyl peptidase IV (−5.94 kcal mol−1 binding energy), Sodium-glucose cotransporter-2 (−6.49 kcal mol−1) diabetes-related enzyme, the Human angiotensin-converting enzyme (−6.31 kcal mol−1) which plays a significant role in hypertension, and Proprotein convertase subtilisin kexin type 9 (−4.67 kcal mol−1) for atherosclerosis. Molecular dynamics simulation analysis substantiates that the flavan-4-ol forms a better stability complex with all the targets. ADMET profiles further strengthened the candidature of the flavan-4-ol bioactive compound to be considered for trial as an inhibitor of targets DPPIV, SGLT2, PCSK9, and hACE. We suggest that more research be conducted, taking Flavon-4-ol into account where it can be used as standard treatment for lifestyle diseases

    Development of Smart Weighing Lysimeter for Measuring Evapotranspiration and Developing Crop Coefficient for Greenhouse Chrysanthemum

    Get PDF
    Not AvailableThe management of water resources is a priority problem in agriculture, especially in areas with a limited water supply. The determination of crop water requirements and crop coefficient (Kc) of agricultural crops helps to create an appropriate irrigation schedule for the effective management of irrigation water. A portable smart weighing lysimeter (1000 × 1000 mm and 600 mm depth) was developed at CPCT, IARI, New Delhi for real‐time measurement of Crop Coefficient (Kc) and water requirement of chrysanthemum crop and bulk data storage. The paper discusses the assembly, structural and operational design of the portable smart weighting lysimeter. The performance characteristics of the developed lysimeter were evaluated under different load conditions. The Kc values of the chrysanthemum crop obtained from the lysimeter installed inside the greenhouse were Kc ini. 0.43 and 0.38, Kc mid‐1.27 and 1.25, and Kc end‐0.67 and 0.59 for the years 2019– 2020 and 2020–2021, respectively, which apprehensively corroborated with the FAO 56 paper for determination of crop coefficient. The Kc values decreased progressively at the late‐season stage because of the maturity and aging of the leaves. The lysimeter’s edge temperature was somewhat higher, whereas the center temperature closely matched the field temperature. The temperature difference between the center and the edge increased as the ambient temperature rose. The developed smart lysimeter system has unique applications due to its real‐time measurement, portable attribute, and ability to produce accurate results for determining crop water use and crop coefficient for greenhouse chrysanthemum crops.Not Availabl

    New genomic regions identified for resistance to spot blotch and terminal heat stress in an interspecific population of triticum aestivum and T. spelta

    Get PDF
    Wheat is one of the most widely grown and consumed food crops in the world. Spot blotch and terminal heat stress are the two significant constraints mainly in the Indo–Gangetic plains of South Asia. The study was undertaken using 185 recombinant lines (RILs) derived from the interspecific hybridization of ‘Triticum aestivum (HUW234) × T. spelta (H+26)’ to reveal genomic regions associated with tolerance to combined stress to spot blotch and terminal heat. Different physiological (NDVI, canopy temperature, leaf chlorophyll) and grain traits (TGW, grain size) were observed under stressed (spot blotch, terminal heat) and non-stressed environments. The mean maturity duration of RILs under combined stress was reduced by 12 days, whereas the normalized difference vegetation index (NDVI) was 46.03%. Similarly, the grain size was depleted under combined stress by 32.23% and thousand kernel weight (TKW) by 27.56% due to spot blotch and terminal heat stress, respectively. The genetic analysis using 6734 SNP markers identified 37 significant loci for the area under the disease progress curve (AUDPC) and NDVI. The genome-wide functional annotation of the SNP markers revealed gene functions such as plant chitinases, NB-ARC and NBS-LRR, and the peroxidase superfamily Cytochrome P450 have a positive role in the resistance through a hypersensitive response. Zinc finger domains, cysteine protease coding gene, F-box protein, ubiquitin, and associated proteins, play a substantial role in the combined stress of spot blotch and terminal heat in bread wheat, according to genomic domains ascribed to them. The study also highlights T. speltoides as a source of resistance to spot blotch and terminal heat tolerance

    Identification of a major QTL, Parth6.1 associated with parthenocarpic fruit development in slicing cucumber genotype, Pusa Parthenocarpic Cucumber-6

    Get PDF
    Parthenocarpy is an extremely important trait that revolutionized the worldwide cultivation of cucumber under protected conditions. Pusa Parthenocarpic Cucumber-6 (PPC-6) is one of the important commercially cultivated varieties under protected conditions in India. Understanding the genetics of parthenocarpy, molecular mapping and the development of molecular markers closely associated with the trait will facilitate the introgression of parthenocarpic traits into non-conventional germplasm and elite varieties. The F1, F2 and back-crosses progenies with a non-parthenocarpic genotype, Pusa Uday indicated a single incomplete dominant gene controlling parthenocarpy in PPC-6. QTL-seq comprising of the early parthenocarpy and non-parthenocarpic bulks along with the parental lines identified two major genomic regions, one each in chromosome 3 and chromosome 6 spanning over a region of 2.7 Mb and 7.8 Mb, respectively. Conventional mapping using F2:3 population also identified two QTLs, Parth6.1 and Parth6.2 in chromosome 6 which indicated the presence of a major effect QTL in chromosome 6 determining parthenocarpy in PPC-6. The flanking markers, SSR01148 and SSR 01012 for Parth6.1 locus and SSR10476 and SSR 19174 for Parth6.2 locus were identified and can be used for introgression of parthenocarpy through the marker-assisted back-crossing programme. Functional annotation of the QTL-region identified two major genes, Csa_6G396640 and Csa_6G405890 designated as probable indole-3-pyruvate monooxygenase YUCCA11 and Auxin response factor 16, respectively associated with auxin biosynthesis as potential candidate genes. Csa_6G396640 showed only one insertion at position 2179 in the non-parthenocarpic parent. In the case of Csa_6G405890, more variations were observed between the two parents in the form of SNPs and InDels. The study provides insight about genomic regions, closely associated markers and possible candidate genes associated with parthenocarpy in PPC-6 which will be instrumental for functional genomics study and better understanding of parthenocarpy in cucumber

    High resolution mapping of QTLs for fruit color and firmness in Amrapali/Sensation mango hybrids

    Get PDF
    IntroductionMango (Mangifera indica L.), acclaimed as the ‘king of fruits’ in the tropical world, has historical, religious, and economic values. It is grown commercially in more than 100 countries, and fresh mango world trade accounts for ~3,200 million US dollars for the year 2020. Mango is widely cultivated in sub-tropical and tropical regions of the world, with India, China, and Thailand being the top three producers. Mango fruit is adored for its taste, color, flavor, and aroma. Fruit color and firmness are important fruit quality traits for consumer acceptance, but their genetics is poorly understood.MethodsFor mapping of fruit color and firmness, mango varieties Amrapali and Sensation, having contrasting fruit quality traits, were crossed for the development of a mapping population. Ninety-two bi-parental progenies obtained from this cross were used for the construction of a high-density linkage map and identification of QTLs. Genotyping was carried out using an 80K SNP chip array.Results and discussionInitially, we constructed two high-density linkage maps based on the segregation of female and male parents. A female map with 3,213 SNPs and male map with 1,781 SNPs were distributed on 20 linkages groups covering map lengths of 2,844.39 and 2,684.22cM, respectively. Finally, the integrated map was constructed comprised of 4,361 SNP markers distributed on 20 linkage groups, which consisted of the chromosome haploid number in Mangifera indica (n =20). The integrated genetic map covered the entire genome of Mangifera indica cv. Dashehari, with a total genetic distance of 2,982.75 cM and an average distance between markers of 0.68 cM. The length of LGs varied from 85.78 to 218.28 cM, with a mean size of 149.14 cM. Phenotyping for fruit color and firmness traits was done for two consecutive seasons. We identified important consistent QTLs for 12 out of 20 traits, with integrated genetic linkages having significant LOD scores in at least one season. Important consistent QTLs for fruit peel color are located at Chr 3 and 18, and firmness on Chr 11 and 20. The QTLs mapped in this study would be useful in the marker-assisted breeding of mango for improved efficiency

    Fungal Genomic Resources for Strain Identification and Diversity Analysis of 1900 Fungal Species

    No full text
    Identification and diversity analysis of fungi is greatly challenging. Though internal transcribed spacer (ITS), region-based DNA fingerprinting works as a “gold standard” for most of the fungal species group, it cannot differentiate between all the groups and cryptic species. Therefore, it is of paramount importance to find an alternative approach for strain differentiation. Availability of whole genome sequence data of nearly 2000 fungal species are a promising solution to such requirement. We present whole genome sequence-based world’s largest microsatellite database, FungSatDB having >19M loci obtained from >1900 fungal species/strains using >4000 assemblies across globe. Genotyping efficacy of FungSatDB has been evaluated by both in-silico and in-vitro PCR. By in silico PCR, 66 strains of 8 countries representing four continents were successfully differentiated. Genotyping efficacy was also evaluated by in vitro PCR in four fungal species. This approach overcomes limitation of ITS in species, strain signature, and diversity analysis. It can accelerate fungal genomic research endeavors in agriculture, industrial, and environmental management

    Centenary of Soil and Air Borne Wheat Karnal Bunt Disease Research: A Review

    No full text
    Karnal bunt (KB) of wheat (Triticum aestivum L.), known as partial bunt has its origin in Karnal, India and is caused by Tilletia indica (Ti). Its incidence had grown drastically since late 1960s from northwestern India to northern India in early 1970s. It is a seed, air and soil borne pathogen mainly affecting common wheat, durum wheat, triticale and other related species. The seeds become inedible, inviable and infertile with the precedence of trimethylamine secreted by teliospores in the infected seeds. Initially the causal pathogen was named Tilletia indica but was later renamed Neovossia indica. The black powdered smelly spores remain viable for years in soil, wheat straw and farmyard manure as primary sources of inoculum. The losses reported were as high as 40% in India and also the cumulative reduction of national farm income in USA was USD 5.3 billion due to KB. The present review utilizes information from literature of the past 100 years, since 1909, to provide a comprehensive and updated understanding of KB, its causal pathogen, biology, epidemiology, pathogenesis, etc. Next generation sequencing (NGS) is gaining popularity in revolutionizing KB genomics for understanding and improving agronomic traits like yield, disease tolerance and disease resistance. Genetic resistance is the best way to manage KB, which may be achieved through detection of genes/quantitative trait loci (QTLs). The genome-wide association studies can be applied to reveal the association mapping panel for understanding and obtaining the KB resistance locus on the wheat genome, which can be crossed with elite wheat cultivars globally for a diverse wheat breeding program. The review discusses the current NGS-based genomic studies, assembly, annotations, resistant QTLs, GWAS, technology landscape of diagnostics and management of KB. The compiled exhaustive information can be beneficial to the wheat breeders for better understanding of incidence of disease in endeavor of quality production of the crop

    Not Available

    No full text
    Not AvailableThe livestock production system has a multi-faceted role in promoting livelihoods, alleviating poverty, building nutritional security & health and improving crop husbandry. The demand for animal-based food and animal products is rapidly growing more notably in developing countries due to rising incomes and urbanization. However, meeting such an upward demand, there is need of socially, economically and technically feasible system for sustainable and environment friendly smart livestock production system. Smart livestock farming envisages the harnessing of Information and Communication Technologies (ICT) as a decision support tool for more efficient, productive and profitable.Not Availabl
    • 

    corecore