4 research outputs found

    pH-Dependent Protein Binding Properties of Uremic Toxins In Vitro

    No full text
    Protein-bound uremic toxins (PBUTs) are difficult to remove using conventional dialysis treatment owing to their high protein-binding affinity. As pH changes the conformation of proteins, it may be associated with the binding of uremic toxins. Albumin conformation at pH 2 to 13 was analyzed using circular dichroism. The protein binding behavior between indoxyl sulfate (IS) and albumin was examined using isothermal titration calorimetry. Albumin with IS, and serum with IS, p-cresyl sulfate, indole acetic acid or phenyl sulfate, as well as serum from hemodialysis patients, were adjusted pH of 3 to 11, and the concentration of the free PBUTs was measured using mass spectrometry. Albumin was unfolded at pH 12, and weakened interaction with IS occurred at pH 10. The concentration of free IS in the albumin solution was increased at pH 4.0 and pH 11.0. Addition of human serum to each toxin resulted in increased free forms at acidic and alkaline pH. The pH values of serums from patients undergoing hemodialysis adjusted to 3.4 and 11.3 resulted in increased concentrations of the free forms of PBUTs. In conclusion, acidic and alkaline pH conditions changed the albumin conformation and weakened the protein binding property of PBUTs in vitro

    pH-Dependent Protein Binding Properties of Uremic Toxins In Vitro

    No full text
    Protein-bound uremic toxins (PBUTs) are difficult to remove using conventional dialysis treatment owing to their high protein-binding affinity. As pH changes the conformation of proteins, it may be associated with the binding of uremic toxins. Albumin conformation at pH 2 to 13 was analyzed using circular dichroism. The protein binding behavior between indoxyl sulfate (IS) and albumin was examined using isothermal titration calorimetry. Albumin with IS, and serum with IS, p-cresyl sulfate, indole acetic acid or phenyl sulfate, as well as serum from hemodialysis patients, were adjusted pH of 3 to 11, and the concentration of the free PBUTs was measured using mass spectrometry. Albumin was unfolded at pH < 4 or >12, and weakened interaction with IS occurred at pH < 5 or >10. The concentration of free IS in the albumin solution was increased at pH 4.0 and pH 11.0. Addition of human serum to each toxin resulted in increased free forms at acidic and alkaline pH. The pH values of serums from patients undergoing hemodialysis adjusted to 3.4 and 11.3 resulted in increased concentrations of the free forms of PBUTs. In conclusion, acidic and alkaline pH conditions changed the albumin conformation and weakened the protein binding property of PBUTs in vitro

    Mass spectrometry-based proteomic analysis of proteins adsorbed by hexadecyl-immobilized cellulose bead column for the treatment of dialysis-related amyloidosis

    No full text
    Dialysis-related amyloidosis (DRA) is a severe complication in end-stage kidney disease (ESKD) patients undergoing long-term dialysis treatment, characterized by the deposition of β2-microglobulin-related amyloids (Aβ2M amyloid). To inhibit DRA progression, hexadecyl-immobilized cellulose bead (HICB) columns are employed to adsorb circulating β2-microglobulin (β2M). However, it is possible that the HICB also adsorbs other molecules involved in amyloidogenesis. We enrolled 14 ESKD patients using HICB columns for DRA treatment; proteins were extracted from HICBs following treatment and identified using liquid chromatography–linked mass spectrometry. We measured the removal rate of these proteins and examined the effect of those molecules on Aβ2M amyloid fibril formation in vitro. We identified 200 proteins adsorbed by HICBs. Of these, 21 were also detected in the amyloid deposits in the carpal tunnels of patients with DRA. After passing through the HICB column and hemodialyzer, the serum levels of proteins such as β2M, lysozyme, angiogenin, complement factor D and matrix Gla protein were reduced. These proteins acted in the Aβ2M amyloid fibril formation. HICBs adsorbed diverse proteins in ESKD patients with DRA, including those detected in amyloid lesions. Direct hemoperfusion utilizing HICBs may play a role in acting Aβ2M amyloidogenesis by reducing the amyloid-related proteins.</p
    corecore