3 research outputs found
Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor
Inhibition
of mutant IDH1 is being evaluated clinically as a promising
treatment option for various cancers with hotspot mutation at Arg<sup>132</sup>. Having identified an allosteric, induced pocket of IDH1<sup>R132H</sup>, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones
as mutant IDH1 inhibitors for <i>in vivo</i> modulation
of 2-HG production and potential brain penetration. We report here
optimization efforts toward the identification of clinical candidate <b>IDH305</b> (<b>13</b>), a potent and selective mutant IDH1
inhibitor that has demonstrated brain exposure in rodents. Preclinical
characterization of this compound exhibited <i>in vivo</i> correlation of 2-HG reduction and efficacy in a patient-derived
IDH1 mutant xenograft tumor model. <b>IDH305</b> (<b>13</b>) has progressed into human clinical trials for the treatment of
cancers with IDH1 mutation
Identification of NVP-TNKS656: The Use of Structure–Efficiency Relationships To Generate a Highly Potent, Selective, and Orally Active Tankyrase Inhibitor
Tankyrase
1 and 2 have been shown to be redundant, druggable nodes
in the Wnt pathway. As such, there has been intense interest in developing
agents suitable for modulating the Wnt pathway in vivo by targeting
this enzyme pair. By utilizing a combination of structure-based design
and LipE-based structure efficiency relationships, the core of XAV939
was optimized into a more stable, more efficient, but less potent
dihydropyran motif <b>7</b>. This core was combined with elements
of screening hits <b>2</b>, <b>19</b>, and <b>33</b> and resulted in highly potent, selective tankyrase inhibitors that
are novel three pocket binders. NVP-TNKS656 (<b>43</b>) was
identified as an orally active antagonist of Wnt pathway activity
in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic
signature of binding, highly favorable physicochemical properties,
and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor
that is well suited for further in vivo validation studies
Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor
SHP2
is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the <i>PTPN11</i> gene involved in cell growth and differentiation
via the MAPK signaling pathway. SHP2 also purportedly plays an important
role in the programmed cell death pathway (PD-1/PD-L1). Because it
is an oncoprotein associated with multiple cancer-related diseases,
as well as a potential immunomodulator, controlling SHP2 activity
is of significant therapeutic interest. Recently in our laboratories,
a small molecule inhibitor of SHP2 was identified as an allosteric
modulator that stabilizes the autoinhibited conformation of SHP2.
A high throughput screen was performed to identify progressable chemical
matter, and X-ray crystallography revealed the location of binding
in a previously undisclosed allosteric binding pocket. Structure-based
drug design was employed to optimize for SHP2 inhibition, and several
new protein–ligand interactions were characterized. These studies
culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine
(SHP099, <b>1</b>), a potent, selective, orally bioavailable,
and efficacious SHP2 inhibitor