168 research outputs found

    Hepatitis C Virus Evasion from RIG-I-Dependent Hepatic Innate Immunity

    Get PDF
    Exposure to hepatitis C virus (HCV) usually results in persistent infection that often develops into chronic liver disease. Interferon-alpha (IFN) treatment comprises the foundation of current approved therapy for chronic HCV infection but is limited in overall efficacy. IFN is a major effector of innate antiviral immunity and is naturally produced in response to viral infection when viral pathogen-associated molecular patterns (PAMPs) are recognized as nonself and are bound by cellular pathogen recognition receptors (PRRs), including Toll-like receptors (TLRs) and the RIG-I-like receptors (RLRs). Within hepatocytes, RIG-I is a major PRR of HCV infection wherein PAMP interactions serve to trigger intracellular signaling cascades in the infected hepatocyte to drive IFN production and the expression of interferon-stimulated genes (ISGs). ISGs function to limit virus replication, modulate the immune system, and to suppress virus spread. However, studies of HCV-host interactions have revealed several mechanisms of innate immune regulation and evasion that feature virus control of PRR signaling and regulation of hepatic innate immune programs that may provide a molecular basis for viral persistence

    Density-invariant Features for Distant Point Cloud Registration

    Full text link
    Registration of distant outdoor LiDAR point clouds is crucial to extending the 3D vision of collaborative autonomous vehicles, and yet is challenging due to small overlapping area and a huge disparity between observed point densities. In this paper, we propose Group-wise Contrastive Learning (GCL) scheme to extract density-invariant geometric features to register distant outdoor LiDAR point clouds. We mark through theoretical analysis and experiments that, contrastive positives should be independent and identically distributed (i.i.d.), in order to train densityinvariant feature extractors. We propose upon the conclusion a simple yet effective training scheme to force the feature of multiple point clouds in the same spatial location (referred to as positive groups) to be similar, which naturally avoids the sampling bias introduced by a pair of point clouds to conform with the i.i.d. principle. The resulting fully-convolutional feature extractor is more powerful and density-invariant than state-of-the-art methods, improving the registration recall of distant scenarios on KITTI and nuScenes benchmarks by 40.9% and 26.9%, respectively. Code is available at https://github.com/liuQuan98/GCL.Comment: In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 202

    Graph Neural Network for Predicting the Effective Properties of Polycrystalline Materials: A Comprehensive Analysis

    Full text link
    We develop a polycrystal graph neural network (PGNN) model for predicting the effective properties of polycrystalline materials, using the Li7La3Zr2O12 ceramic as an example. A large-scale dataset with >5000 different three-dimensional polycrystalline microstructures of finite-width grain boundary is generated by Voronoi tessellation and processing of the electron backscatter diffraction images. The effective ion conductivities and elastic stiffness coefficients of these microstructures are calculated by high-throughput physics-based simulations. The optimized PGNN model achieves a low error of <1.4% in predicting all three diagonal components of the effective Li-ion conductivity matrix, outperforming a linear regression model and two baseline convolutional neural network models. Sequential forward selection method is used to quantify the relative importance of selecting individual grain (boundary) features to improving the property prediction accuracy, through which both the critical and unwanted node (edge) feature can be determined. The extrapolation performance of the trained PGNN model is also investigated. The transfer learning performance is evaluated by using the PGNN model pretrained for predicting conductivities to predict the elastic properties of the same set of microstructures.Comment: 23 pages, 6 figures; added testing results on a new dataset and sequential feature selectio

    MoGDE: Boosting Mobile Monocular 3D Object Detection with Ground Depth Estimation

    Full text link
    Monocular 3D object detection (Mono3D) in mobile settings (e.g., on a vehicle, a drone, or a robot) is an important yet challenging task. Due to the near-far disparity phenomenon of monocular vision and the ever-changing camera pose, it is hard to acquire high detection accuracy, especially for far objects. Inspired by the insight that the depth of an object can be well determined according to the depth of the ground where it stands, in this paper, we propose a novel Mono3D framework, called MoGDE, which constantly estimates the corresponding ground depth of an image and then utilizes the estimated ground depth information to guide Mono3D. To this end, we utilize a pose detection network to estimate the pose of the camera and then construct a feature map portraying pixel-level ground depth according to the 3D-to-2D perspective geometry. Moreover, to improve Mono3D with the estimated ground depth, we design an RGB-D feature fusion network based on the transformer structure, where the long-range self-attention mechanism is utilized to effectively identify ground-contacting points and pin the corresponding ground depth to the image feature map. We conduct extensive experiments on the real-world KITTI dataset. The results demonstrate that MoGDE can effectively improve the Mono3D accuracy and robustness for both near and far objects. MoGDE yields the best performance compared with the state-of-the-art methods by a large margin and is ranked number one on the KITTI 3D benchmark.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS), 2022. arXiv admin note: text overlap with arXiv:2303.1301

    A Survey on Federated Unlearning: Challenges, Methods, and Future Directions

    Full text link
    In recent years, the notion of ``the right to be forgotten" (RTBF) has evolved into a fundamental element of data privacy regulations, affording individuals the ability to request the removal of their personal data from digital records. Consequently, given the extensive adoption of data-intensive machine learning (ML) algorithms and increasing concerns for personal data privacy protection, the concept of machine unlearning (MU) has gained considerable attention. MU empowers an ML model to selectively eliminate sensitive or personally identifiable information it acquired during the training process. Evolving from the foundational principles of MU, federated unlearning (FU) has emerged to confront the challenge of data erasure within the domain of federated learning (FL) settings. This empowers the FL model to unlearn an FL client or identifiable information pertaining to the client while preserving the integrity of the decentralized learning process. Nevertheless, unlike traditional MU, the distinctive attributes of federated learning introduce specific challenges for FU techniques. These challenges lead to the need for tailored design when designing FU algorithms. Therefore, this comprehensive survey delves into the techniques, methodologies, and recent advancements in federated unlearning. It provides an overview of fundamental concepts and principles, evaluates existing federated unlearning algorithms, reviews optimizations tailored to federated learning, engages in discussions regarding practical applications, along with an assessment of their limitations, and outlines promising directions for future research

    DFlow: Efficient Dataflow-based Invocation Workflow Execution for Function-as-a-Service

    Full text link
    The Serverless Computing is becoming increasingly popular due to its ease of use and fine-grained billing. These features make it appealing for stateful application or serverless workflow. However, current serverless workflow systems utilize a controlflow-based invocation pattern to invoke functions. In this execution pattern, the function invocation depends on the state of the function. A function can only begin executing once all its precursor functions have completed. As a result, this pattern may potentially lead to longer end-to-end execution time. We design and implement the DFlow, a novel dataflow-based serverless workflow system that achieves high performance for serverless workflow. DFlow introduces a distributed scheduler (DScheduler) by using the dataflow-based invocation pattern to invoke functions. In this pattern, the function invocation depends on the data dependency between functions. The function can start to execute even its precursor functions are still running. DFlow further features a distributed store (DStore) that utilizes effective fine-grained optimization techniques to eliminate function interaction, thereby enabling efficient data exchange. With the support of DScheduler and DStore, DFlow can achieving an average improvement of 60% over CFlow, 40% over FaaSFlow, 25% over FaasFlowRedis, and 40% over KNIX on 99%-ile latency respectively. Further, it can improve network bandwidth utilization by 2x-4x over CFlow and 1.5x-3x over FaaSFlow, FaaSFlowRedis and KNIX, respectively. DFlow effectively reduces the cold startup latency, achieving an average improvement of 5.6x over CFlow and 1.1x over FaaSFlowComment: 22 pages, 13 figure

    Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks

    Get PDF
    This paper first presents an analysis strategy to meet requirements of a sensing application through trade-offs between the energy consumption (lifetime) and source-to-sink transport delay under reliability constraint wireless sensor networks. A novel data gathering protocol named Broadcasting Combined with Multi-NACK/ACK (BCMN/A) protocol is proposed based on the analysis strategy. The BCMN/A protocol achieves energy and delay efficiency during the data gathering process both in intra-cluster and inter-cluster. In intra-cluster, after each round of TDMA collection, a cluster head broadcasts NACK to indicate nodes which fail to send data in order to prevent nodes that successfully send data from retransmission. The energy for data gathering in intra-cluster is conserved and transport delay is decreased with multi-NACK mechanism. Meanwhile in inter-clusters, multi-ACK is returned whenever a sensor node sends any data packet. Although the number of ACKs to be sent is increased, the number of data packets to be retransmitted is significantly decreased so that consequently it reduces the node energy consumption. The BCMN/A protocol is evaluated by theoretical analysis as well as extensive simulations and these results demonstrate that our proposed protocol jointly optimizes the network lifetime and transport delay under network reliability constraint

    The Molecular Basis of Viral Inhibition of IRF- and STAT-Dependent Immune Responses

    Get PDF
    The antiviral innate immunity is the first line of host defense against virus infections. In mammalian cells, viral infections initiate the expression of interferons (IFNs) in the host that in turn activate an antiviral defense program to restrict viral replications by induction of IFN stimulated genes (ISGs), which are largely regulated by the IFN-regulatory factor (IRF) family and signal transducer and activator of transcription (STAT) family transcription factors. The mechanisms of action of IRFs and STATs involve several post-translational modifications, complex formation, and nuclear translocation of these transcription factors. However, many viruses, including human immunodeficiency virus (HIV), Zika virus (ZIKV), and herpes simplex virus (HSV), have evolved strategies to evade host defense, including alteration in IRF and STAT post-translational modifications, disturbing the formation and nuclear translocation of the transcription complexes as well as proteolysis/degradation of IRFs and STATs. In this review, we discuss and summarize the molecular mechanisms by which how viral components may target IRFs and STATs to antagonize the establishment of antiviral host defense. The underlying host-viral interactions determine the outcome of viral infection. Gaining mechanistic insight into these processes will be crucial in understanding how viral replication can be more effectively controlled and in developing approaches to improve virus infection outcomes

    Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog

    Get PDF
    Alcohol synergistically enhances the progression of liver disease and the risk for liver cancer caused by hepatitis C virus (HCV). However, the molecular mechanism of this synergy remains unclear. Here, we provide the first evidence that Toll-like receptor 4 (TLR4) is induced by hepatocyte-specific transgenic (Tg) expression of the HCV nonstructural protein NS5A, and this induction mediates synergistic liver damage and tumor formation by alcohol-induced endotoxemia. We also identify Nanog, the stem/progenitor cell marker, as a novel downstream gene up-regulated by TLR4 activation and the presence of CD133/Nanog-positive cells in liver tumors of alcohol-fed NS5A Tg mice. Transplantation of p53-deficient hepatic progenitor cells transduced with TLR4 results in liver tumor development in mice following repetitive LPS injection, but concomitant transduction of Nanog short-hairpin RNA abrogates this outcome. Taken together, our study demonstrates a TLR4-dependent mechanism of synergistic liver disease by HCV and alcohol and an obligatory role for Nanog, a TLR4 downstream gene, in HCV-induced liver oncogenesis enhanced by alcohol
    corecore