49 research outputs found

    Supportive development of functional tissues for biomedical research using the MINUSHEET(R) perfusion system

    Get PDF
    Functional tissues generated under in vitro conditions are urgently needed in biomedical research. However, the engineering of tissues is rather difficult, since their development is influenced by numerous parameters. In consequence, a versatile culture system was developed to respond the unmet needs.Optimal adhesion for cells in this system is reached by the selection of individual biomaterials. To protect cells during handling and culture, the biomaterial is mounted onto a MINUSHEET(R) tissue carrier. While adherence of cells takes place in the static environment of a 24 well culture plate, generation of tissues is accomplished in one of several available perfusion culture containers. In the basic version a continuous flow of always fresh culture medium is provided to the developing tissue. In a gradient perfusion culture container epithelia are exposed to different fluids at the luminal and basal sides. Another special container with a transparent lid and base enables microscopic visualization of ongoing tissue development. A further container exhibits a flexible silicone lid to apply force onto the developing tissue thereby mimicking mechanical load that is required for developing connective and muscular tissue. Finally, stem/progenitor cells are kept at the interface of an artificial polyester interstitium within a perfusion culture container offering for example an optimal environment for the spatial development of renal tubules.The system presented here was evaluated by various research groups. As a result a variety of publications including most interesting applications were published. In the present paper these data were reviewed and analyzed. All of the results point out that the cell biological profile of engineered tissues can be strongly improved, when the introduced perfusion culture technique is applied in combination with specific biomaterials supporting primary adhesion of cells

    Bridging the gap between traditional cell cultures and bioreactors applied in regenerative medicine: practical experiences with the MINUSHEET perfusion culture system

    No full text

    Structural links between the renal stem/progenitor cell niche and the organ capsule

    No full text
    A special feature of the renal stem/progenitor cell niche is its always close neighborhood to the capsule during organ development. To explore this link, neonatal kidney was investigated by histochemistry and transmission electron microscopy. For adequate contrasting, fixation of specimens was performed by glutaraldehyde including tannic acid. The immunohistochemical data illustrate that renal stem/progenitor cells are not distributed randomly but are positioned specially to the capsule. Epithelial stem/progenitor cells are found to be enclosed by the basal lamina at a collecting duct (CD) ampulla tip. Only few layers of mesenchymal cells are detected between epithelial cells and the capsule. Most impressive, numerous microfibers reacting with soybean agglutinin, anti-collagen I and III originate from the basal lamina at a CD ampulla tip and line between mesenchymal stem/progenitor cells to the inner side of the capsule. This specific arrangement holds together both types of stem/progenitor cells in a cage and fastens the niche as a whole at the capsule. Electron microscopy further illustrates that the stem/progenitor cell niche is in contact with a tunnel system widely spreading between atypical smooth muscle cells at the inner side of the capsule. It seems probable that stem/progenitor cells are supplied here by interstitial fluid
    corecore