134 research outputs found

    The mutual patterning between the developing nephron and its covering tissues—valid reasons to rethink the search for traces left by impaired nephrogenesis

    Get PDF
    After 175 dynamic years the name Springer stands for a globally active publisher dedicated to the advancement of science, putting its authors and editors at the heart of the company’s publishing activities

    The interstitium at the developing nephron in the fetal kidney during advanced pregnancy — a microanatomical inventory

    Get PDF
    Background A series of noxae can evoke the termination of nephron formation in preterm and low birth weight babies. This results in oligonephropathy with severe consequences for health in the later life. Although the clinical parameters have been extensively investigated, little is known about the initial damage. Previous pathological findings indicate the reduction in width of the nephrogenic zone and the lack of S-shaped bodies. Current morphological investigations suggest that due to the mutual patterning beside the forming nephron, also its structural neighbors, particularly the interjacent interstitium, must be affected. However, beside the findings on integrative and mastering functions, systematic microanatomical data explaining the configuration of the interstitium at the developing nephron in the fetal kidney during advanced pregnancy is not available. Therefore, this work explains the typical features. Results The generated data depicts that the progenitor cells, nephrogenic niche, pretubular aggregate, and mesenchymal-to-epithelial transition are restricted to the subcapsular interstitium. During the proceeding development, only the distal pole of the renal vesicles and comma- and S-shaped bodies stays in further contact with it. The respective proximal pole is positioned opposite the peritubular interstitium at the connecting tubule of an underlying but previously formed nephron. The related medial aspect faces the narrow peritubular interstitium of a collecting duct (CD) ampulla first only at its tip, then at its head, conus, and neck, and finally at the differentiating CD tubule. The lateral aspect starts at the subcapsular interstitium, but then it is positioned along the wide perivascular interstitium of the neighboring ascending perforating radiate artery. When the nephron matures, the interstitial configuration changes again. Conclusions The present investigation illustrates that the interstitium at the forming nephron in the fetal kidney consists of existing, transient, stage-specific, and differently far matured compartments. According to the developmental needs, it changes its shape by formation, degradation, fusion, and rebuilding

    PCDAmpl, a new antigen at the interface of the embryonic collecting duct epithelium and the nephrogenic mesenchyme

    Get PDF
    P CDAmpl, a new antigen at the interface of the embryonic collecting duct epithelium and the nephrogenic mesenchyme. In the neonatal rabbit kidney nephrogenesis is not yet terminated. The ampullar collecting duct epithelium acts as an inducer that generates the nephron anlagen, however, to date the morphogenic mechanisms involved are unknown. A presupposition for successful nephron induction is the close tissue interaction between the basal aspect of the ampullar collecting duct epithelium and the surrounding mesenchyme. To gain new insights in this area we raised monoclonal antibodies (mabs), to identify specific structures localized at the tissue interface. With the generated mab CDAmpl we found an intensive immunohistochemical reaction between the basal aspect of the ampullar collecting duct epithelium and the mesenchyme. The label was most concentrated at the ampullar tip and continuously decreased in the shaft region. In the maturing collecting duct of the neonatal kidney and in the adult renal collecting duct no immunohistochemical reaction was found. The binding pattern of mab CDAmpl is different from that of all known collecting duct cell markers and from antibodies against known basement membrane compounds such as laminin or collagen type IV. Under in vitro conditions immunoreactivity with mab CDAmpl was obtained using embryonic collecting duct epithelia and perfusion culture. The antigen was present in specimens treated with Iscove's modified Dulbecco's Medium (IMDM) containing 10% fetal bovine serum. Omittance of serum or hormonal treatment with aldosterone, insulin or vitamin D3 led to the disappearance of the newly detected antigen, while characteristics of the differentiated collecting duct cells were up-regulated. We conclude that the expression of P CDAmpl is a characteristic feature of the embryonic parts of the collecting duct epithelium. It may play a pivotal role during nephron induction

    Cell Projections and Extracellular Matrix Cross the Interstitial Interface within the Renal Stem/Progenitor Cell Niche: Accidental, Structural or Functional Cues?

    Get PDF
    Background: During nephron induction, morphogenetic molecules are reciprocally exchanged between epithelial and mesenchymal stem/progenitor cells within the renal stem/progenitor cell niche. That these molecules remain concentrated, it is assumed that both cell populations stand in close contact to each other. However, recently published data illustrate that epithelial and mesenchymal cells are separated by an astonishingly wide interstitial interface. Methods: To gain deeper morphological insights into the spatial distribution of mesenchymal and epithelial stem/progenitor cells, the embryonic zone of neonatal rabbit kidney was fixed either with glutaraldehyde (GA) or in a combination with cupromeronic blue, ruthenium red or tannic acid. Transmission electron microscopy was then performed on exactly orientated sections. Results: Conventional fixation with GA illustrates that epithelial and mesenchymal stem/progenitor cells are separated by a bright but inconspicuously looking interstitial interface. In contrast, fixation of specimens in GA containing cupromeronic blue, ruthenium red or tannic acid elucidates that part of the interstitial interface exhibits a special extracellular matrix extending like woven strands between mesenchymal and epithelial stem/progenitor cells. In parallel, filigree projections from mesenchymal stem/progenitor cells cross the interstitial interface to penetrate the basal lamina of epithelial cells. Fusion of the plasma membranes cannot be observed. Instead, touching mesenchymal cell projections form a cone at the contact site with tunneling nanotubes. Conclusions: The results demonstrate that the contact between mesenchymal and epithelial stem/progenitor cells does not form accidentally but physiologically and appears to belong to a suspected system involved in the exchange of morphogenetic information

    Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins

    Get PDF
    Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion

    Changes in the electrophoretic pattern of nuclear proteins from noninduced and induced embryonic ectoderm

    No full text
    • …
    corecore