308 research outputs found

    Biosensors based on nucleic acid interaction

    Get PDF
    DNA sensing is an emerging technology based on hybridisation reaction between an immobilised DNA probe and a molecular target, consisting of a probe complementary sequence in solution. Many application have been developed in the field of environmental, food and clinical analysis.Surface plasmon resonance and piezoelectric sensing are reported as transduction principles for DNA-based devices. These techniques are able to monitor in real-time and without the use of any label the hybridisation reaction between nucleic acids. Particular attention is given to Genetically Modified Organism detection

    Surface plasmon resonance imaging for affinity-based biosensors

    Get PDF
    SPR imaging (SPRi) is at the forefront of optical label-free and real-time detection. It offers the possibility of monitoring hundreds of biological interactions simultaneously and from the binding profiles, allows the estimation of the kinetic parameters of the interactions between the immobilised probes and the ligands in solution. We review the current state of development of SPRi technology and its application including commercially available SPRi instruments. Attention is also given to surface chemistries for biochip functionalisation and suitable approaches to improve sensitivity

    Bio)Sensor Approach in the Evaluation of Polyphenols in Vegetal Matrices

    Get PDF
    Polyphenols are compounds widely distributed in the plant kingdom and have attracted much attention, because of their health benefits and important properties such as radical scavenging, metal chelating agents, inhibitors of lipoprotein oxidation, anti-inflammatory and anti-allergic activities. Due to their important role in the diet and in therapy, it is important to estimate their content in the different matrices of interest. Besides classical analytical methods, new emerging technologies have also appeared in the last decade aiming for simple and eventually cheap detection of polyphenols. This review focused on the recent applications of biosensing-based technologies for polyphenol estimation in vegetal matrices, using different transduction principles. These analytical tools are generally fast, giving responses in the order of a few seconds/minutes, and also very sensitive and generally selective (mainly depending on the enzyme used). Direct measurements in most of the investigated matrices were possible, both in aqueous and organic phases

    Structurally Constrained MUC1-Tn Mimetic Antigen as Template for Molecularly Imprinted Polymers (MIPs): A Promising Tool for Cancer Diagnostics

    Get PDF
    Abnormal glycoconjugates have distinctly been recognized as potential biomarkers for cancer diagnosis. A great deal of attention has been focused on Tn antigen, an oversimplified mucin-1 O-glycan, over-expressed in different cancers. Herein, we investigate the possibility to replace the use of anti-Tn monoclonal antibodies with an innovative class of catecholamine-based Molecularly Imprinted Polymers (MIPs), emerging in recent years as promising tools for bioanalytical applications. MIPs are synthetic receptors characterized by high sensitivity and specificity towards the imprinted target. Here, original polynorepinephrine-based MIPs coupled to Surface Plasmon Resonance biosensing for Tn antigen recognition are reported. We have verified the imprinting and binding capacity of these MIPs towards very small antigenic entities, represented by the natural Tn antigen and the TnThr mimetic 1 (conjugated to BSA or linked to a MUC1 hexapeptide analogue), and compared the biosensor performances with an anti-Tn monoclonal antibody. The results clearly display the effectiveness of the pursued imprinting strategies
    • …
    corecore