9 research outputs found

    Cloning and characterization of a cDNA encoding a male-specific serum protein of the Mediterranean fruit fly, Ceratitis capitata, with sequence similarity to odourant-binding proteins

    No full text
    Male-specific serum proteins (MSSPs) are low molecular weight proteins which accumulate in high amounts in the haemolymph of adult males of the medfly Ceratitis capitata. By screening an expression library with anti-MSSP antibodies, we have isolated and determined the nucleotide sequence of a cDNA clone coding for one of the male-specific polypeptides (MSSP-α). The MSSP-α mRNA encodes a polypeptide of 144 amino acids with a secretory signal sequence of sixteen amino acids. Southern analysis indicated that there are multiple copies of MSSP genes in the medfly genome. Northern analysis showed that the MSSP mRNAs are synthesized only in adult males. The accumulation pattern of these mRNAs during development suggests that the expression of the MSSP genes is developmentally regulated at both transcriptional and translational levels. The predicted peptide sequence of MSSP-α shows significant similarity to a group of pheromone- and general odourant-binding proteins of insects

    Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells

    No full text
    Myeloid-derived suppressor cells (MDSCs) densely accumulate into tumors and potently suppress antitumor immune responses, promoting tumor development. Targeting MDSCs in tumor immunotherapy has been hampered by lack of understanding of the molecular pathways that govern MDSC differentiation and function. Herein, we identify autophagy as a crucial pathway for MDSC-mediated suppression of antitumor immunity. Specifically, MDSCs in patients with melanoma and mouse melanoma exhibited increased levels of functional autophagy. Ablation of autophagy in myeloid cells markedly delayed tumor growth and endowed antitumor immune responses. Notably, tumor-infiltrating autophagy-deficient monocytic MDSCs (M-MDSCs) demonstrated impaired suppressive activity in vitro and in vivo, whereas transcriptome analysis revealed substantial differences in genes related to lysosomal function. Accordingly, autophagy-deficient M-MDSCs exhibited impaired lysosomal degradation, thereby enhancing surface expression of MHC class II molecules, resulting in efficient activation of tumor-specific CD4+ T cells. Finally, targeting of the membrane-associated RING-CH1 (MARCH1) E3 ubiquitin ligase that mediates the lysosomal degradation of MHC II in M-MDSCs attenuated their suppressive function, and resulted in markedly decreased tumor volume followed by development of a robust antitumor immunity. Collectively, these findings depict autophagy as a molecular target of MDSC-mediated suppression of antitumor immunity. © 2018 American Society for Clinical Investigation. All rights reserved

    Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations

    No full text
    Next-generation sequencing (NGS)-based measurable residual disease (MRD) monitoring in patients with acute myeloid leukemia (AML) is widely applicable and prognostic prior to allogeneic hematopoietic cell transplantation (alloHCT). We evaluated the prognostic role of clonal hematopoiesis-associated DNMT3A, TET2, and ASXL1 (DTA) and non-DTA mutations for MRD monitoring post-alloHCT to refine MRD marker selection. Of 154 patients with AML, 138 (90%) had at least one mutation at diagnosis, which were retrospectively monitored by amplicon-based error-corrected NGS on day 90 and/or day 180 post-alloHCT. MRD was detected in 34 patients on day 90 and/or day 180 (25%). The rate of MRD positivity was similar when DTA and non-DTA mutations were considered separately (17.6% vs 19.8%). DTA mutations had no prognostic impact on cumulative incidence of relapse, relapse-free survival, or overall survival in our study and were removed from further analysis. In the remaining 131 patients with at least 1 non-DTA mutation, clinical and transplantation-associated characteristics were similarly distributed between MRD-positive and MRD-negative patients. In multivariate analysis, MRD positivity was an independent adverse predictor of cumulative incidence of relapse, relapse-free survival, and overall survival but not of nonrelapse mortality. The prognostic effect was independent of different cutoffs (above limit of detection, 0.1% and 1% variant allele frequency). MRD log-reduction between diagnosis and post-alloHCT assessment had no prognostic value. MRD status post-alloHCT had the strongest impact in patients who were MRD positive prior to alloHCT. In conclusion, non-DTA mutations are prognostic NGS-MRD markers post-alloHCT, whereas the prognostic role of DTA mutations in the posttransplant setting remains open

    Isolation and characterization of microsatellite markers from the Mediterranean fruit fly, Ceratitis capitata: cross-species amplification in other Tephritidae species reveals a varying degree of transferability

    No full text
    The Mediterranean fruit fly, Ceratitis capitata, is a pest of major economic importance and has become a model for the development of SIT control programs for insect pests. Significant information has been accumulated on classical and population genetics of this species during the past 2 decades. However, the availability of molecular markers is limited. Here, we present the isolation and characterization of 159 microsatellite clones and the development of 108 polymorphic microsatellite markers for this insect pest. Mapping by in situ hybridization to polytene chromosomes of 21 microsatellite clones enriched the cytogenetic map that was previously constructed by our group. The enriched map provides a large number of STSs for future genome mapping projects. Cross-species amplification of these microsatellite loci in 12 Tephritidae species and sequence analysis of several amplification products indicated a varying degree of transferability and their possible usefulness as molecular and genetic markers in these species where genetic and molecular tools are limited
    corecore