430 research outputs found

    Josephson junction between anisotropic superconductors

    Full text link
    The sin-Gordon equation for Josephson junctions with arbitrary misaligned anisotropic banks is derived. As an application, the problem of Josephson vortices at twin planes of a YBCO-like material is considered. It is shown that for an arbitrary orientation of these vortices relative to the crystal axes of the banks, the junctions should experience a mechanical torque which is evaluated. This torque and its angular dependence may, in principle, be measured in small fields, since the flux penetration into twinned crystals begins with nucleation of Josephson vortices at twin planes.Comment: 6 page

    Electromagnetic waves in a Josephson junction in a thin film

    Full text link
    We consider a one-dimensional Josephson junction in a superconducting film with the thickness that is much less than the London penetration depth. We treat an electromagnetic wave propagating along this tunnel contact. We show that the electrodynamics of a Josephson junction in a thin film is nonlocal if the wave length is less than the Pearl penetration depth. We find the integro-differential equation determining the phase difference between the two superconductors forming the tunnel contact. We use this equation to calculate the dispersion relation for an electromagnetic wave propagating along the Josephson junction. We find that the frequency of this wave is proportional to the square root of the wave vector if the wave length is less than the Pearl penetration depth.Comment: 12 pages, a figure is included as a uuencodeded postscript file, ReVTe

    Josephson Vortex Bloch Oscillations: Single Pair Tunneling Effect

    Full text link
    We consider the Josephson vortex motion in a long one--dimensional Josephson junction in a thin film. We show that this Josephson vortex is similar to a mesoscopic capacitor. We demonstrate that a single Cooper pair tunneling results in nonlinear Bloch--type oscillations of a Josephson vortex in a current-biased Josephson junction. We find the frequency and the amplitude of this motion.Comment: 7 pages, 2 figures included as postscript files, LaTe

    Relaxation measurements in the regime of the second magnetization peak in Nb films

    Full text link
    We report on magnetic measurements as a function of field, temperature and time (relaxation) in superconducting Nb films of critical temperature Tc = 9.25 K. The magnetic measurements as a function of field exhibited a second magnetization peak (SMP) which in general is accompanied by thermomagnetic instabilities (TMIs). The lines where the SMP occurs and where the first flux jump in the virgin magnetization curves is observed, end at a characteristic point (To,Ho)=(7.2 K,80 Oe). Relaxation measurements showed that for T<To=7.2 K the activation energy Uo and the normalized relaxation rate S exhibit non-monotonic behavior as a function either of temperature or field. The extrema observed in Uo and S coincide with the onset and the maximum points of the SMP. In the regime T>To=7.2 K both Uo and S present a conventional monotonic behavior. These results indicate that the SMP behavior observed in our Nb films is promoted by the anomalous relaxation of the magnetization.Comment: To appear in Physica

    Semantics and Proof Theory of the Epsilon Calculus

    Full text link
    The epsilon operator is a term-forming operator which replaces quantifiers in ordinary predicate logic. The application of this undervalued formalism has been hampered by the absence of well-behaved proof systems on the one hand, and accessible presentations of its theory on the other. One significant early result for the original axiomatic proof system for the epsilon-calculus is the first epsilon theorem, for which a proof is sketched. The system itself is discussed, also relative to possible semantic interpretations. The problems facing the development of proof-theoretically well-behaved systems are outlined.Comment: arXiv admin note: substantial text overlap with arXiv:1411.362

    Interference patterns of multifacet 20x(0-pi-) Josephson junctions with ferromagnetic barrier

    Get PDF
    We have realized multifacet Josephson junctions with periodically alternating critical current density (MJJs) using superconductor-insulator-ferromagnet-superconductor heterostructures. We show that anomalous features of critical current vs. applied magnetic field, observed also for other types of MJJs, are caused by a non-uniform flux density (parallel to the barrier) resulting from screening currents in the electrodes in the presence of a (parasitic) off-plane field component.Comment: submitted to PR

    Visualizing supercurrents in ferromagnetic Josephson junctions with various arrangements of 0 and \pi segments

    Get PDF
    Josephson junctions with ferromagnetic barrier can have positive or negative critical current depending on the thickness dFd_F of the ferromagnetic layer. Accordingly, the Josephson phase in the ground state is equal to 0 (a conventional or 0 junction) or to π\pi (π\pi junction). When 0 and π\pi segments are joined to form a "0-π\pi junction", spontaneous supercurrents around the 0-π\pi boundary can appear. Here we report on the visualization of supercurrents in superconductor-insulator-ferromagnet-superconductor (SIFS) junctions by low-temperature scanning electron microscopy (LTSEM). We discuss data for rectangular 0, π\pi, 0-π\pi, 0-π\pi-0 and 20 \times 0-π\pi junctions, disk-shaped junctions where the 0-π\pi boundary forms a ring, and an annular junction with two 0-π\pi boundaries. Within each 0 or π\pi segment the critical current density is fairly homogeneous, as indicated both by measurements of the magnetic field dependence of the critical current and by LTSEM. The π\pi parts have critical current densities jcπj_c^\pi up to 35\units{A/cm^2} at T = 4.2\units{K}, which is a record value for SIFS junctions with a NiCu F-layer so far. We also demonstrate that SIFS technology is capable to produce Josephson devices with a unique topology of the 0-π\pi boundary.Comment: 29 pages, 8 figure

    Buckling instability in type-II superconductors with strong pinning

    Full text link
    We predict a novel buckling instability in the critical state of thin type-II superconductors with strong pinning. This elastic instability appears in high perpendicular magnetic fields and may cause an almost periodic series of flux jumps visible in the magnetization curve. As an illustration we apply the obtained criteria to a long rectangular strip.Comment: Submitted to Phys. Rev. Let
    • …
    corecore