430 research outputs found
Josephson junction between anisotropic superconductors
The sin-Gordon equation for Josephson junctions with arbitrary misaligned
anisotropic banks is derived. As an application, the problem of Josephson
vortices at twin planes of a YBCO-like material is considered. It is shown that
for an arbitrary orientation of these vortices relative to the crystal axes of
the banks, the junctions should experience a mechanical torque which is
evaluated. This torque and its angular dependence may, in principle, be
measured in small fields, since the flux penetration into twinned crystals
begins with nucleation of Josephson vortices at twin planes.Comment: 6 page
Electromagnetic waves in a Josephson junction in a thin film
We consider a one-dimensional Josephson junction in a superconducting film
with the thickness that is much less than the London penetration depth. We
treat an electromagnetic wave propagating along this tunnel contact. We show
that the electrodynamics of a Josephson junction in a thin film is nonlocal if
the wave length is less than the Pearl penetration depth. We find the
integro-differential equation determining the phase difference between the two
superconductors forming the tunnel contact. We use this equation to calculate
the dispersion relation for an electromagnetic wave propagating along the
Josephson junction. We find that the frequency of this wave is proportional to
the square root of the wave vector if the wave length is less than the Pearl
penetration depth.Comment: 12 pages, a figure is included as a uuencodeded postscript file,
ReVTe
Josephson Vortex Bloch Oscillations: Single Pair Tunneling Effect
We consider the Josephson vortex motion in a long one--dimensional Josephson
junction in a thin film. We show that this Josephson vortex is similar to a
mesoscopic capacitor. We demonstrate that a single Cooper pair tunneling
results in nonlinear Bloch--type oscillations of a Josephson vortex in a
current-biased Josephson junction. We find the frequency and the amplitude of
this motion.Comment: 7 pages, 2 figures included as postscript files, LaTe
Relaxation measurements in the regime of the second magnetization peak in Nb films
We report on magnetic measurements as a function of field, temperature and
time (relaxation) in superconducting Nb films of critical temperature Tc = 9.25
K. The magnetic measurements as a function of field exhibited a second
magnetization peak (SMP) which in general is accompanied by thermomagnetic
instabilities (TMIs). The lines where the SMP occurs and where the first flux
jump in the virgin magnetization curves is observed, end at a characteristic
point (To,Ho)=(7.2 K,80 Oe). Relaxation measurements showed that for T<To=7.2 K
the activation energy Uo and the normalized relaxation rate S exhibit
non-monotonic behavior as a function either of temperature or field. The
extrema observed in Uo and S coincide with the onset and the maximum points of
the SMP. In the regime T>To=7.2 K both Uo and S present a conventional
monotonic behavior. These results indicate that the SMP behavior observed in
our Nb films is promoted by the anomalous relaxation of the magnetization.Comment: To appear in Physica
Semantics and Proof Theory of the Epsilon Calculus
The epsilon operator is a term-forming operator which replaces quantifiers in
ordinary predicate logic. The application of this undervalued formalism has
been hampered by the absence of well-behaved proof systems on the one hand, and
accessible presentations of its theory on the other. One significant early
result for the original axiomatic proof system for the epsilon-calculus is the
first epsilon theorem, for which a proof is sketched. The system itself is
discussed, also relative to possible semantic interpretations. The problems
facing the development of proof-theoretically well-behaved systems are
outlined.Comment: arXiv admin note: substantial text overlap with arXiv:1411.362
Interference patterns of multifacet 20x(0-pi-) Josephson junctions with ferromagnetic barrier
We have realized multifacet Josephson junctions with periodically alternating
critical current density (MJJs) using
superconductor-insulator-ferromagnet-superconductor heterostructures. We show
that anomalous features of critical current vs. applied magnetic field,
observed also for other types of MJJs, are caused by a non-uniform flux density
(parallel to the barrier) resulting from screening currents in the electrodes
in the presence of a (parasitic) off-plane field component.Comment: submitted to PR
Visualizing supercurrents in ferromagnetic Josephson junctions with various arrangements of 0 and \pi segments
Josephson junctions with ferromagnetic barrier can have positive or negative
critical current depending on the thickness of the ferromagnetic layer.
Accordingly, the Josephson phase in the ground state is equal to 0 (a
conventional or 0 junction) or to ( junction). When 0 and
segments are joined to form a "0- junction", spontaneous supercurrents
around the 0- boundary can appear. Here we report on the visualization of
supercurrents in superconductor-insulator-ferromagnet-superconductor (SIFS)
junctions by low-temperature scanning electron microscopy (LTSEM). We discuss
data for rectangular 0, , 0-, 0--0 and 20 \times 0-
junctions, disk-shaped junctions where the 0- boundary forms a ring, and
an annular junction with two 0- boundaries. Within each 0 or segment
the critical current density is fairly homogeneous, as indicated both by
measurements of the magnetic field dependence of the critical current and by
LTSEM. The parts have critical current densities up to
35\units{A/cm^2} at T = 4.2\units{K}, which is a record value for SIFS
junctions with a NiCu F-layer so far. We also demonstrate that SIFS technology
is capable to produce Josephson devices with a unique topology of the 0-
boundary.Comment: 29 pages, 8 figure
Buckling instability in type-II superconductors with strong pinning
We predict a novel buckling instability in the critical state of thin type-II
superconductors with strong pinning. This elastic instability appears in high
perpendicular magnetic fields and may cause an almost periodic series of flux
jumps visible in the magnetization curve. As an illustration we apply the
obtained criteria to a long rectangular strip.Comment: Submitted to Phys. Rev. Let
- …