3 research outputs found

    Discovery and in Vivo Evaluation of the Potent and Selective PI3Kδ Inhibitors 2‑((1<i>S</i>)‑1-((6-Amino-5-cyano-4-pyrimidinyl)amino)ethyl)-6-fluoro‑<i>N</i>‑methyl-3-(2-pyridinyl)-4-quinolinecarboxamide (AM-0687) and 2‑((1<i>S</i>)‑1-((6-Amino-5-cyano-4-pyrimidinyl)amino)ethyl)-5-fluoro‑<i>N</i>‑methyl-3-(2-pyridinyl)-4-quinolinecarboxamide (AM-1430)

    No full text
    Optimization of the potency and pharmacokinetic profile of 2,3,4-trisubstituted quinoline, <b>4</b>, led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, <b>6a</b> (AM-0687) and <b>7</b> (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of <b>6a</b> and <b>7</b> in biochemical and cellular assays. Efficacy experiments in a keyhole limpet hemocyanin model in rats demonstrated that administration of either <b>6a</b> or <b>7</b> resulted in a strong dose-dependent reduction of IgG and IgM specific antibodies. The excellent in vitro and in vivo profiles of these analogs make them suitable for further development

    Potent GCN2 Inhibitor Capable of Reversing MDSC-Driven T Cell Suppression Demonstrates In Vivo Efficacy as a Single Agent and in Combination with Anti-Angiogenesis Therapy

    No full text
    General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound 39 engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID. We also demonstrate the ability of compound 39 to alleviate MDSC-related T cell suppression and restore T cell proliferation, similar to the effect seen in MDSCs from GCN2 knockout mice. In the LL2 syngeneic mouse model, compound 39 demonstrates significant tumor growth inhibition (TGI) as a single agent. Furthermore, TGI mediated by anti-VEGFR was enhanced by treatment with compound 39 demonstrating the complementarity of these two mechanisms

    Potent GCN2 Inhibitor Capable of Reversing MDSC-Driven T Cell Suppression Demonstrates In Vivo Efficacy as a Single Agent and in Combination with Anti-Angiogenesis Therapy

    No full text
    General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound 39 engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID. We also demonstrate the ability of compound 39 to alleviate MDSC-related T cell suppression and restore T cell proliferation, similar to the effect seen in MDSCs from GCN2 knockout mice. In the LL2 syngeneic mouse model, compound 39 demonstrates significant tumor growth inhibition (TGI) as a single agent. Furthermore, TGI mediated by anti-VEGFR was enhanced by treatment with compound 39 demonstrating the complementarity of these two mechanisms
    corecore