899 research outputs found
A robust timing and frequency synchronization for OFDM systems
Abstract—A robust symbol-timing and carrier-frequency synchronization scheme applicable to orthogonal frequency-division-multiplexing systems is presented. The proposed method is based on a training symbol specifically designed to have a steep rolloff timing metric. The proposed timing metric also provides a robust sync detection capability. Both time domain training and frequency domain (FD) training are investigated. For FD training, maintaining a low peak-to-average power ratio of the training symbol was taken into consideration. The channel estimation scheme based on the designed training symbol was also incorporated in the system in order to give both fine-timing and frequency-offset estimates. For fine frequency estimation, two approaches are presented. The first one is based on the suppression of the interference introduced in the frequency estimation process by the training symbol pattern in the context of multipath dispersive channels. The second one is based on the maximum likelihood principle and does not suffer from any interference. A new performance measure is introduced for timing estimation, which is based on the plot of signal to timing-error-induced average interference power ratio against the timing estimate shift. A simple approach for finding the optimal setting of the timing estimator is presented. Finally, the sync detection, timing estimation, frequency estimation, and bit-error-rate performance of the proposed method are presented in a multipath Rayleigh fading channel. Index Terms—Frequency-offset estimation, orthogonal frequency-division multiplexing (OFDM), symbol-timing estimation, synchronization, training symbol. I
Visual Saliency Based on Fast Nonparametric Multidimensional Entropy Estimation
Bottom-up visual saliency can be computed through information theoretic models but existing methods face significant computational challenges. Whilst nonparametric methods suffer from the curse of dimensionality problem and are computationally expensive, parametric approaches have the difficulty of determining the shape parameters of the distribution models. This paper makes two contributions to information theoretic based visual saliency models. First, we formulate visual saliency as center surround conditional entropy which gives a direct and intuitive interpretation of the center surround mechanism under the information theoretic framework. Second, and more importantly, we introduce a fast nonparametric multidimensional entropy estimation solution to make information theoretic-based saliency models computationally tractable and practicable in realtime applications. We present experimental results on publicly available eyetracking image databases to demonstrate that the proposed method is competitive to state of the art
Errors in kinematic distances and our image of the Milky Way Galaxy
Errors in the kinematic distances, under the assumption of circular gas
orbits, were estimated by performing synthetic observations of a model disk
galaxy. It was found that the error is < 0.5 kpc for most of the disk when the
measured rotation curve was used, but larger if the real rotation curve is
applied. In both cases, the error is significantly larger at the positions of
the spiral arms. The error structure is such that, when kinematic distances are
used to develope a picture of the large scale density distribution, the most
significant features of the numerical model are significantly distorted or
absent, while spurious structure appears. By considering the full velocity
field in the calculation of the kinematic distances, most of the original
density structures can be recovered.Comment: Accepted for publication in A
A time-domain control signal detection technique for OFDM
Transmission of system-critical control information plays a key role in efficient management of limited wireless network resources and successful reception of payload data information. This paper uses an orthogonal frequency division multiplexing (OFDM) architecture to investigate the detection performance of a time-domain approach used to detect deterministic control signalling information. It considers a type of control information chosen from a finite set of information, which is known at both transmitting and receiving wireless terminals. Unlike the maximum likelihood (ML) estimation method, which is often used, the time-domain detection technique requires no channel estimation and no pilots as it uses a form of time-domain correlation as the means of detection. Results show that when compared with the ML method, the time-domain approach improves detection performance even in the presence of synchronisation error caused by carrier frequency offset
Making the Most of Mealtimes (M3): protocol of a multi-centre cross-sectional study of food intake and its determinants in older adults living in long term care homes
Background: Older adults living in long term care (LTC) homes are nutritionally vulnerable, often consuming insufficient energy, macro-and micronutrients to sustain their health and function. Multiple factors are proposed to influence food intake, yet our understanding of these diverse factors and their interactions are limited. The purpose of this paper is to fully describe the protocol used to examine determinants of food and fluid intake among older adults participating in the Making the Most of Mealtimes (M3) study. Methods: A conceptual framework that considers multi-level influences on mealtime experience, meal quality and meal access was used to design this multi-site cross-sectional study. Data were collected from 639 participants residing in 32 LTC homes in four Canadian provinces by trained researchers. Food intake was assessed with three-days of weighed food intake (main plate items), as well as estimations of side dishes, beverages and snacks and compared to the Dietary Reference Intake. Resident-level measures included: nutritional status, nutritional risk; disease conditions, medication, and diet prescriptions; oral health exam, signs of swallowing difficulty and olfactory ability; observed eating behaviours, type and number of staff assisting with eating; and food and foodservice satisfaction. Function, cognition, depression and pain were assessed using interRAI LTCF with selected items completed by researchers with care staff. Care staff completed a standardized person-directed care questionnaire. Researchers assessed dining rooms for physical and psychosocial aspects that could influence food intake. Management from each site completed a questionnaire that described the home, menu development, food production, out-sourcing of food, staffing levels, and staff training. Hierarchical regression models, accounting for clustering within province, home and dining room will be used to determine factors independently associated with energy and protein intake, as proxies for intake. Proportions of residents at risk of inadequate diets will also be determined. Discussion: This rigorous and comprehensive data collection in a large and diverse sample will provide, for the first time, the opportunity to consider important modifiable factors associated with poor food intake of residents in LTC. Identification of factors that are independently associated with food intake will help to develop effective interventions that support food intake.Canadian Institutes of Health Research (CIHR) , The PI is an endowed research chair with the Schlegel-University of Waterloo Research Institute for Aging; half of her salary is provided by this non-profit organizatio
- …