20 research outputs found

    Effect of Double-Ovsynch and Presynch-Ovsynch on postpartum ovarian cysts and inactive ovary in high-yielding dairy cows

    Get PDF
    IntroductionOptimizing the management of dairy cattle reproduction can reduce postpartum ovarian disease in high-yielding dairy cows and thus enhance ranch economic benefit. The hypothesis of this study was that the Double-Ovsynch (DO) protocol in high-producing dairy cows would result in a lower incidence of follicular cysts but a higher incidence of luteal cysts compared to those undergoing the Presynch-Ovsynch (PS) protocol.MethodsIn this experiment, 384 cows (204 primiparous and 180 multiparous) were allocated to the DO group, which followed the protocol: GnRH-7d-PGF2α-3d-GnRH-7d-Ovsynch-56 h (GnRH-7d-PGF2α-56 h-GnRH-16hTAI), starting on 39 ± 3 days in milk (DIM). Additionally, 359 cows (176 primiparous and 183 multiparous) were assigned to the PS group, which followed the protocol: PGF2α-14d-PGF2α-12d-Ovsynch-56 h, starting on 31 ± 3 DIM. In DO, B-mode ultrasound examinations were conducted 1 day after the GnRH-7d-PGF2α-3d-GnRH protocol to diagnose the presence of ovarian diseases followed by reexamination after 7 days of suspected cases. In PS, B-mode ultrasound examinations were conducted 1 day after the PGF2α-14d-PGF2α protocol to diagnose the presence of ovarian diseases followed by reexamination after 7 days. For all cows confirmed to having ovarian diseases, a second B-mode ultrasound examination was conducted at the time of the second GnRH and timed artificial insemination (TAI). If the ovary showed a normal developing follicle in combination with normal ovulation, the ovarian disease was considered to be cured.ResultsThe current study revealed no significant difference in the overall incidence and cure rate of postpartum ovarian diseases between DO and PS (incidence rate: 3.9% vs. 6.7%, cure rate: 50% vs. 41.7%, DO vs. PS). Also, there was no significant difference in the incidence and cure rate of luteal cysts between DO and PS (incidence rate: 2.9% vs. 2.2%, cure rate: 50.0% vs. 50.0%). The incidence of follicular cysts was significantly lower in the DO group than in the PS group (0.8% vs. 2.8%, DO vs. PS, p = 0.037), but there was no significant difference in the cure rates (66.7% vs. 50%). The occurrence of inactive ovary was lower in DO compared to PS (0.2% vs. 1.7%, p = 0.047). There was no significant difference in the pregnancy rate between the DO and PS groups (48.2% vs. 41.8%), although the DO group had a higher rate. What is different from our assumption is that PS did not effectively reduce the incidence of postpartum luteal cysts

    Epidermal Growth Factor Gene Polymorphism and Risk of Hepatocellular Carcinoma: A Meta-Analysis

    Get PDF
    BACKGROUND: Hepatocarcinogenesis is a complex process that may be influenced by many factors, including polymorphism in the epidermal growth factor (EGF) gene. Previous work suggests an association between the EGF 61*A/G polymorphism (rs4444903) and susceptibility to hepatocellular carcinoma (HCC), but the results have been inconsistent. Therefore, we performed a meta-analysis of several studies covering a large population to address this controversy. METHODS: PubMed, EMBASE, Google Scholar and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis was performed to examine the association between EGF 61*A/G polymorphism and susceptibility to HCC. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS: Eight studies were chosen in this meta-analysis, involving 1,304 HCC cases (1135 Chinese, 44 Caucasian and 125 mixed) and 2,613 controls (1638 Chinese, 77 Caucasian and 898 mixed). The EGF 61*G allele was significantly associated with increased risk of HCC based on allelic contrast (OR = 1.29, 95% CI = 1.16-1.44, p<0.001), homozygote comparison (OR = 1.79, 95% CI = 1.39-2.29, p<0.001) and a recessive genetic model (OR = 1.34, 95% CI = 1.16-1.54, p<0.001), while patients carrying the EGF 61*A/A genotype had significantly lower risk of HCC than those with the G/A or G/G genotype (A/A vs. G/A+G/G, OR = 0.66, 95% CI = 0.53-0.83, p<0.001). CONCLUSION: The 61*G polymorphism in EGF is a risk factor for hepatocarcinogenesis while the EGF 61*A allele is a protective factor. Further large and well-designed studies are needed to confirm this conclusion

    Prognostic Role of MicroRNA-210 in Various Carcinomas: A Systematic Review and Meta-Analysis

    No full text
    Objective. Many studies have shown that microRNAs (miRNAs) could play a potential role as prognostic biomarkers of tumors. The aim of this study is to summarize the global predicting role of microRNA-210 (miR-210) for survival in patients with a variety of carcinomas. Methods. Relevant literature was identified using PubMed and the information in eligible studies has been extracted. Then meta-analysis of hazard ratio (HR) was performed to evaluate the prognostic role of the miR-210 in different tumors. Results. This meta-analysis included 9 published studies dealing with various carcinomas. For recurrence free survival or disease free survival (RFS/DFS), the combined hazard ratio (HR) and 95% confidence interval (95% CI) of higher miR-210 expression were 2.47 [1.36, 4.46], which could significantly predict poor survival in general carcinomas. MicroRNA-210 was also a significant predictor for overall survival (OS), metastasis free survival or distant relapse free survival (MFS/DRFS), and disease specific survival (DSS). Importantly, subgroup analysis suggested that higher expression of miR-210 correlated with worse RFS/DFS, OS, and MFS/DRFS, especially in breast cancer, which were 3.36 [2.30, 4.93], 3.29 [1.65, 6.58], and 2.85 [1.76, 4.62] separately. Conclusion. Our studies suggested that microRNA-210 could predict the outcome of patients with varieties of tumors, especially in breast cancers

    Parentage-Based Group Composition and Dispersal Pattern Studies of the Yangtze Finless Porpoise Population in Poyang Lake

    No full text
    Social behaviors are poorly known for the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis). Here, group composition and dispersal patterns of the YFP population living in the Poyang Lake were studied by parentage-based pedigree analyses using 21 microsatellite loci and a 597 bp segment of the mitochondrial DNA control region. In this study, 21 potential mother-offspring pairs and six potential father-offspring pairs (including two potential parents-offspring pairs) were determined, among which 12 natural mother-offspring groups and a maternal group of three generations were found. No genetically-determined fathers were found associated with their offspring. This study also found that maternally related porpoises at the reproductive state tend to group together. This suggest maternal relationship and reproductive state may be factors for grouping in the YFP population. In natural mother-offspring groups, male offspring were all younger than two years old, which suggest male offspring may leave their mothers at approximately two years of age, or at least they were not in tight association with their mothers as they may have been under two years old. However, female offspring can stay longer with their mothers and can reproduce in the natal group

    Quantitative Proteomics of Sleep-Deprived Mouse Brains Reveals Global Changes in Mitochondrial Proteins

    No full text
    <div><p>Sleep is a ubiquitous, tightly regulated, and evolutionarily conserved behavior observed in almost all animals. Prolonged sleep deprivation can be fatal, indicating that sleep is a physiological necessity. However, little is known about its core function. To gain insight into this mystery, we used advanced quantitative proteomics technology to survey the global changes in brain protein abundance. Aiming to gain a comprehensive profile, our proteomics workflow included filter-aided sample preparation (FASP), which increased the coverage of membrane proteins; tandem mass tag (TMT) labeling, for relative quantitation; and high resolution, high mass accuracy, high throughput mass spectrometry (MS). In total, we obtained the relative abundance ratios of 9888 proteins encoded by 6070 genes. Interestingly, we observed significant enrichment for mitochondrial proteins among the differentially expressed proteins. This finding suggests that sleep deprivation strongly affects signaling pathways that govern either energy metabolism or responses to mitochondrial stress. Additionally, the differentially-expressed proteins are enriched in pathways implicated in age-dependent neurodegenerative diseases, including Parkinson’s, Huntington’s, and Alzheimer’s, hinting at possible connections between sleep loss, mitochondrial stress, and neurodegeneration.</p></div

    Sleep deprivation resulted in the up-regulation of proteins involved in cellular respiration.

    No full text
    <p>(<b>A</b>) Venn diagrams showing the distribution of significantly up-regulated proteins in the CG and CL groups. The overlap of 22 overlapped proteins is detailed in <i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0163500#pone.0163500.t001" target="_blank">Table 1</a></i>. (<b>B</b>) All of the complexes in the electron transport chain were influenced by sleep deprivation. Complex I-III had only up-regulated subunits, but Complex IV and V had both up- and down-regulated subunits. Dysregulated proteins are listed in the coloured table. Up-regulated proteins are in red boxes; down-regulated proteins are in green. Double arrows represent changes common to both the CG and CL sample groups. (<b>C</b>) Proteins involved in small molecule metabolism were collectively up-regulated. Metabolic compounds are framed in orange boxes, and connected with one another with solid or dashed lines, which indicate direct or indirect conversions, respectively. Enzymes that are found up-regulated from the CG or the CL groups are enclosed in parentheses or square brackets, respectively, or presented with bold font if increased in both groups. (<b>D</b>) After being synthesized in the cytosol, preproteins enter the mitochondria through the translocase of the outer membrane (TOM) followed by the translocase of the inner membrane (TIM). TIMM9 was up-regulated in both SD groups. During its transit, polypeptide can be bound and stabilized by mtHsp70 (encoded by Hspa9) with the help of Grpel1. Next, the preprotein is handed over to the complex composed of Hsp60 (encoded by Hspd1) and Hsp10 (encoded by Hspe1) and is further assisted with folding. Upon reaching their native states, mature mitochondrial proteins are sorted to their final destinations. Proteins damaged either by ROS attack or misfolding are repaired by entering refolding cycles or are degraded with the assistance of these chaperones. Chaperones that are found up-regulated from the CG or the CL groups are enclosed in parentheses or square brackets, respectively, or presented in bold font if found to be increased in both groups.</p

    Proteins up-regulated by sleep deprivation are linked to neurodegeneration diseases.

    No full text
    <p>According to the annotations of the KEGG Disease and the Human Phenotype Ontology databases, the 140 up-regulated proteins in the CG or CL groups, or both, were enriched for proteins associated with human diseases. The bars show the percentage (left) and–ln(<i>p</i> value) (right) of the enriched annotation categories (*, p<0.05, -ln(p value) >3). Up-regulated proteins are significantly enriched in Parkinson’s disease, Huntington’s disease, and Alzheimer’s disease.</p
    corecore