29 research outputs found
Targeting Ribosome Assembly Factors Selectively Protects p53 Positive Cells from Chemotherapeutic Agents
Many chemotherapeutic agents act in a nondiscriminatory fashion, targeting both cancerous and noncancerous cells in Sphase and Mphase. One approach to reduce the toxic side effects in normal tissue is to exploit the differences in p53 functionality between cancerous and noncancerous cells. For example, activating p53 signaling by nongenotoxic means can transiently arrest noncancerous p53 positive cells in G1 phase and protect them from the cytotoxic effects of chemotherapeutic drugs. However, since most cancerous cells have faulty p53 signaling, they will proceed to cycle, and continue to be affected by the drug. In this study we asked if this G1‐phase arrest and cytoprotection can be achieved by targeting ribosome biogenesis. Through the expression of a dominant negative mutant ribosome assembly factor Bop1, we were able to transiently inhibit rRNA maturation. Using this genetic model, we have shown that inhibition of rRNA maturation protects 3T3 cells from chemotherapeutic agents camptothecin and methotrexate
Inhibition of Post-Transcriptional Steps in Ribosome Biogenesis Confers Cytoprotection Against Chemotherapeutic Agents in a p53-Dependent Manner
The p53-mediated nucleolar stress response associated with inhibition of ribosomal RNA transcription was previously shown to potentiate killing of tumor cells. Here, we asked whether targeting of ribosome biogenesis can be used as the basis for selective p53-dependent cytoprotection of nonmalignant cells. Temporary functional inactivation of the 60S ribosome assembly factor Bop1 in a 3T3 cell model markedly increased cell recovery after exposure to camptothecin or methotrexate. This was due, at least in part, to reversible pausing of the cell cycle preventing S phase associated DNA damage. Similar cytoprotective effects were observed after transient shRNA-mediated silencing of Rps19, but not several other tested ribosomal proteins, indicating distinct cellular responses to the inhibition of different steps in ribosome biogenesis. By temporarily inactivating Bop1 function, we further demonstrate selective killing of p53-deficient cells with camptothecin while sparing isogenic p53-positive cells. Thus, combining cytotoxic treatments with inhibition of select post-transcriptional steps of ribosome biogenesis holds potential for therapeutic targeting of cells that have lost p53
Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells
Background:The combination of the reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib with gemcitabine obtained FDA approval for treating patients with pancreatic cancer. However, duration of response is often limited and there is currently no reliable predictive marker.Methods:We determined the sensitivity of a panel of human pancreatic tumour cell lines to treatment with afatinib, erlotinib, monoclonal antibody (mAb) ICR62, and gemcitabine, using the Sulforhodamine B colorimetric assay. The effect of these agents on cell signalling and cell-cycle distribution was determined by western blot and flow cytometry, respectively.Results:At 200 nM, ICR62 had no effect on growth of these tumour cells with the exception of BxPC-3 cells. BxPC-3 cells were also sensitive to treatment with afatinib and erlotinib with respective IC(50) values of 11 and 1200 nM. Compared with erlotinib, afatinib was also more effective in inhibiting the growth of the other human pancreatic tumour cell lines and in blocking the EGF-induced phosphorylation of tyrosine, EGFR, MAPK, and AKT. When tested in BxPC-3 xenografts, afatinib induced significant delay in tumour growth.Conclusion:The superiority of afatinib in this study encourages further investigation on the therapeutic potential of afatinib as a single agent or in combination with gemcitabine in pancreatic cancer.British Journal of Cancer advance online publication, 4 October 2011; doi:10.1038/bjc.2011.396 www.bjcancer.com