6 research outputs found

    The Geology of Ukhaa Tolgod (Djadokhta Formation, Upper Cretaceous, Nemegt Basin, Mongolia)

    Get PDF
    The lithostratigrahy and sedimentology of the fossiliferous Upper Cretaceous strata exposed in the Gobi Desert of Mongolia at Ukhaa Tolgod are described and mapped on aerial photos. Topographic features are also mapped by plane table and alidade. Five lithologic and sedimentologic facies are described: E-1, distinctly cross-stratified sandstone with fine structure, interpreted to represent eolian dune deposits; E-2, vaguely bedded sandstone with cross-stratified concretionary sheets, interpreted to represent eolian dune deposits modified by diagenetic formation of slope-parallel concretionary sheets of pedogenic calcite; S, structureless sandstone lacking concretions or cross-strata, interpreted to represent sandslide deposits generated by mass wasting along the lee slopes; C, conglomerate interpreted to represent basin-margin conglomerates washed into the dune field from adjacent topographic highs; and M, mudstone and siltstone interpreted to represent interdune deposition in ephemeral ponds and lakes. Facies E-2 and S have not been reported previously. Eleven stratigraphic sections at various localities within the Ukhaa Tolgod drainage basin are documented. The exposed composite section consists of about 75 m of pale orange sandstones, greenish-brown conglomerates, and brown siltstones that are products of an arid environment. Four schematic cross sections are documented to illustrate the lateral relationships among the five facies. In the Ukhaa Tolgod area, the beds dip about 2.5u to the south, away from the nearby Gilbent Range. This structural attitude is interpreted to be related to the uplift of the Gilbent block along normal faults exposed at the base of the range. The dune-derived sandslides of Facies S contain a rich skeletal fauna of Late Cretaceous dinosaurs, mammals, and lizards. Essentially, all the skeletal remains collected at Ukhaa Tolgod come from Facies S. Facies E-1 does contain numerous, concave-up depressions in the cross-strata interpreted as vertebrate tracks. Facies E-2 contains abundant cylindrical structures interpreted as burrows. The strata at Ukhaa Tolgod are referred to the Djadokhta Formation. As seen in the Bayn Dzak Member at Bayn Dzak, facies E-1, E-2, S, and M dominate the lower part of the section at Ukhaa Tolgod, with prominent beds of Facies C exposed near the top. Accordingly, the exposures at Ukhaa Tolgod are referred to the Bayn Dzak Member of the Djadokhta Formation. Classic exposures of the Barun Goyot Formation at Khulsan differ in having units of flat-bedded sandstone intercalated with beds of Facies S near the top of the section. To date, over 1,000 vertebrate skulls and skeletons have been collected from Facies S. Most are preserved as float contained in small calcareous nodules; however, some were found in situ. Many specimens represent either fairly complete skulls or skulls with articulated or associated postcranial skeletons. Based on faunal similarities between Bayn Dzak and Ukhaa Tolgod, the fauna at Ukhaa Tolgod is interpreted to reflect a Campanian age. The rich assemblage of fossils makes Ukhaa Tolgod one of the richest Late Cretaceous vertebrate fossil localities in the world, and the fossils provide unique insights into evolutionary developments of mammals, lizards, and dinosaurs, including birds, less than 10 my before the terminal Cretaceous extinction event

    モンゴル,ウランバートル・テレーンの石炭紀礫岩中のグラノファイア礫(予報)

    No full text
    A granophyre cobble was found from conglomerate of the early Carboniferous Altan Ovoo Formation in the Ulaanbaatar Terrane, central Mongolia. The conglomerate occurs in sandstoneshale alternations, is partly matrix-supported and partly clast-supported, and consists largely of rounded pebbles and cobbles of rhyolite with lesser amounts of quartz porphyry, sandstone, mudstone, granite, andesite and granophyre. Clast imbrication, although not common, shows their derivation from the west. The granophyre clast is characterized by having micrographic texture, titanite and secondary pumpellyite. One quartz porphyry clast contains pumpellyite and rock fragments of granophyre very similar to the granophyre clast, suggesting that the granophyre and quartz porphyry are likely to be related in their provenance
    corecore