40 research outputs found

    Explainable machine learning models for predicting 30-day readmission in pediatric pulmonary hypertension: A multicenter, retrospective study

    Get PDF
    BackgroundShort-term readmission for pediatric pulmonary hypertension (PH) is associated with a substantial social and personal burden. However, tools to predict individualized readmission risk are lacking. This study aimed to develop machine learning models to predict 30-day unplanned readmission in children with PH.MethodsThis study collected data on pediatric inpatients with PH from the Chongqing Medical University Medical Data Platform from January 2012 to January 2019. Key clinical variables were selected by the least absolute shrinkage and the selection operator. Prediction models were selected from 15 machine learning algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC). The outcome of the predictive model was interpreted by SHapley Additive exPlanations (SHAP).ResultsA total of 5,913 pediatric patients with PH were included in the final cohort. The CatBoost model was selected as the predictive model with the greatest AUC for 0.81 (95% CI: 0.77–0.86), high accuracy for 0.74 (95% CI: 0.72–0.76), sensitivity 0.78 (95% CI: 0.69–0.87), and specificity 0.74 (95% CI: 0.72–0.76). Age, length of stay (LOS), congenital heart surgery, and nonmedical order discharge showed the greatest impact on 30-day readmission in pediatric PH, according to SHAP results.ConclusionsThis study developed a CatBoost model to predict the risk of unplanned 30-day readmission in pediatric patients with PH, which showed more significant performance compared with traditional logistic regression. We found that age, LOS, congenital heart surgery, and nonmedical order discharge were important factors for 30-day readmission in pediatric PH

    Multiparametric Cardiovascular Magnetic Resonance in Acute Myocarditis: Comparison of 2009 and 2018 Lake Louise Criteria With Endomyocardial Biopsy Confirmation.

    Get PDF
    Background: Cardiac magnetic resonance (CMR) has been shown to improve the diagnosis of myocarditis, but no systematic comparison of this technique is currently available. The purpose of this study was to compare the 2009 and 2018 Lake Louise Criteria (LLC) for the diagnosis of acute myocarditis using 3.0 T MRI with endomyocardial biopsy (EMB) as a reference and to provide the cutoff values for multiparametric CMR techniques. Methods: A total of 73 patients (32 ± 14 years, 71.2% men) with clinically suspected myocarditis undergoing EMB and CMR with 3.0 T were enrolled in the study. Patients were divided into two groups according to EMB results (EMB-positive and -negative groups). The CMR protocol consisted of cine-SSFP, T2 STIR, T2 mapping, early and late gadolinium enhancement (EGE, LGE), and pre- and post-contrast T1 mapping. Their potential diagnostic ability was assessed with receiver operating characteristic curves. Results: The myocardial T1 and T2 relaxation times were significantly higher in the EMB-positive group than in the EMB-negative group. Optimal cutoff values were 1,228 ms for T1 relaxation times and 58.5 ms for T2 relaxation times with sensitivities of 86.0 and 83.7% and specificities of 93.3 and 93.3%, respectively. The 2018 LLC had a better diagnostic performance than the 2009 LLC in terms of sensitivity, specificity, positive predictive value, and negative predictive value. T1 mapping + T2 mapping had the largest area under the curve (0.95) compared to other single or combined parameters (2018 LLC: 0.91; 2009 LLC: 0.76; T2 ratio: 0.71; EGEr: 0.67; LGE: 0.73; ). The diagnostic accuracy for the 2018 LLC was the highest (91.8%), followed by T1 mapping (89.0%) and T2 mapping (87.7%). Conclusion: Emerging technologies such as T1/ T2 mapping have significantly improved the diagnostic performance of CMR for the diagnosis of acute myocarditis. The 2018 LLC provided the overall best diagnostic performance in acute myocarditis compared to other single standard CMR parameters or combined parameters. There was no significant gain when 2018LLC is combined with the EGE sequence

    Estimation of HIV-1 incidence among five focal populations in Dehong, Yunnan: a hard hit area along a major drug trafficking route

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 1989 when the first 146 HIV positives in China were identified, Dehong Prefecture had been one of the areas hardest-hit by HIV in China. The local and national governments have put substantial financial resources into tackling the HIV epidemic in Dehong from 2004. The objective of this study was to track dynamic changes in HIV-1 prevalence and incidence among five focal populations in Dehong and to assess the impact of HIV prevention and control efforts.</p> <p>Methods</p> <p>Consecutive cross-sectional surveys conducted in five focal populations between 2004 and 2008. Specimens seropositive for HIV were tested with the BED IgG capture enzyme immunoassay to identify recent seroconversions (median, 155 days) using normalized optical density of 0.8 and adjustments.</p> <p>Results</p> <p>From 2004 to 2008, estimated annual HIV incidence among injecting drug users (IDUs) decreased significantly [from 15.0% (95% CI = 11.4%-18.5%) in 2004 to 4.3% (95% CI = 2.4%-6.2%) in 2008; trend test P < 0.0001]. The incidence among other focal populations, such as HIV discordant couples (varying from 5.5% to 4.7%), female sex workers (varying from 1.4% to 1.3%), pregnant women (0.1%), and pre-marital couples (0.2 to 0.1%) remained stable. Overall, the proportion of recent HIV-1 infections was higher among females than males (P < 0.0001).</p> <p>Conclusions</p> <p>The HIV epidemic in Dehong continued to expand during a five-year period but at a slowing rate among IDUs, and HIV incidence remains high among IDUs and discordant couples. Intensive prevention measures should target sub-groups at highest risk to further slow the epidemic and control the migration of HIV to other areas of China, and multivariate analysis is needed to explore which measures are more effective for different populations.</p

    White layer formation mechanism in dry turning hardened steel

    No full text

    Estimation of Greenhouse-Grown Eggplant Evapotranspiration Based on a Crop Coefficient Model

    No full text
    Accurate estimation of crop evapotranspiration (ETc) is important to determine crop water requirements in greenhouse agriculture and to improve the irrigation water use efficiency. Here, a 3-year (2017–2019) experiment with spring greenhouse-grown eggplant (Solanum melongena L.) was conducted to investigate variation in the crop coefficient (Kc) measured with a weighing lysimeter, adjust Kc based on the local climate (Kc,Adj), and estimate daily ETc using a crop coefficient model. The 3-years mean local Kc (Kc,Loc) were 0.23 ± 0.03, 0.62 ± 0.06, 1.05 ± 0.03 and 0.87 ± 0.03 at the initial, development, mid-season, and end-season stages, respectively. Significant linear correlation was observed between Kc,Adj and Kc,Loc in the 3 years (R2 = 0.873, 0.901, and 0.897 in 2017–2019, respectively). Compared with the FAO-56 recommended Kc value (Kc,FAO), the mean Kc,Adj and Kc,Loc in the 3 years were by 66.3% and 61.8% lower, respectively. The single crop coefficient model accurately estimated daily ETc for greenhouse-grown eggplant. The coefficient of determination (R2), mean absolute error (MAE), root-mean-squared error (RMSE), and index of agreement between measured ETc and that estimated by the single crop coefficient model were 0.94, 0.35 mm‧d−1, 0.26 mm‧d−1, and 0.98, respectively, for the means in 2018 and 2019. Therefore, the crop coefficient method reliably estimated evapotranspiration with adjustment for the actual environment and can serve as a useful tool to improve water use efficiency

    AaeAP1 and AaeAP2: Novel Antimicrobial Peptides from the Venom of the Scorpion, Androctonus aeneas: Structural Characterisation, Molecular Cloning of Biosynthetic Precursor-Encoding cDNAs and Engineering of Analogues with Enhanced Antimicrobial and Anticancer Activities

    Get PDF
    The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation

    Dynamic Responses of a Pile with a Cap under the Freezing and Thawing Processes of a Saturated Porous Media Considering Slippage between Pile and Soil

    No full text
    The freezing/thawing stratification effect of seasonal factors or artificial disturbances in frozen soil regions has an important influence on the vertical vibration of the pile&ndash;soil&ndash;cap system. Taking into account the slippage between the pile and soil, a simplified layered analytical model of the vertical vibration of the pile&ndash;soil&ndash;cap system in a double-layered stratum under the freezing and thawing processes of a saturated porous medium was established, and the analytical solution of the dynamic response on the top of the pile cap was obtained. In this model, frozen saturated porous media and Biot&rsquo;s porous media theory were used to simulate frozen soil and unfrozen soil, respectively. The validation of the slippage model was first verified by comparison with the results of the existing model tests. This was followed by a dynamic model test of the pile&ndash;soil&ndash;cap system in a self-made, ground-freezing system. In comparison with the analytical results and the experimental results of model tests under the freezing/thawing processes, the validation of the present model is further verified. A comprehensive parametric study reveals that the parameters of the frozen or thawed soil layer have significant effects on the amplitude&ndash;frequency curve of the vertical vibration of the pile foundation

    Dynamic Responses of a Pile with a Cap under the Freezing and Thawing Processes of a Saturated Porous Media Considering Slippage between Pile and Soil

    No full text
    The freezing/thawing stratification effect of seasonal factors or artificial disturbances in frozen soil regions has an important influence on the vertical vibration of the pile–soil–cap system. Taking into account the slippage between the pile and soil, a simplified layered analytical model of the vertical vibration of the pile–soil–cap system in a double-layered stratum under the freezing and thawing processes of a saturated porous medium was established, and the analytical solution of the dynamic response on the top of the pile cap was obtained. In this model, frozen saturated porous media and Biot’s porous media theory were used to simulate frozen soil and unfrozen soil, respectively. The validation of the slippage model was first verified by comparison with the results of the existing model tests. This was followed by a dynamic model test of the pile–soil–cap system in a self-made, ground-freezing system. In comparison with the analytical results and the experimental results of model tests under the freezing/thawing processes, the validation of the present model is further verified. A comprehensive parametric study reveals that the parameters of the frozen or thawed soil layer have significant effects on the amplitude–frequency curve of the vertical vibration of the pile foundation

    Efficient Synthesis and Anti-Fungal Activity of Oleanolic Acid Oxime Esters

    No full text
    In order to develop potential glucosamine-6-phosphate synthase inhibitors and anti-fungal agents, twenty five oleanolic acid oxime esters were synthesized in an efficient way. The structures of the new compounds were confirmed by MS, HRMS, 1H-NMR and 13C-NMR. Preliminary studies based on means of the Elson-Morgan method indicated that many compounds exhibited some inhibitory activity of glucosamine-6-phosphate synthase (GlmS), and the original fungicidal activities results showed that some of the compounds exhibited good fungicidal activities towards Sclerotinia sclerotiorum (Lib.) de Bary, Rhizoctonia solani Kuhn and Botrytis cinerea Pers at the concentration of 50 µg/mL. These compounds would thus merit further study and development as antifungal agents
    corecore