5 research outputs found

    Multiple Disguises for the Same Party: The Concepts of Morphogenesis and Phenotypic Variations in Cryptococcus neoformans†

    Get PDF
    Although morphological transitions (such as hyphae and pseudohyphae formation) are a common feature among fungi, the encapsulated pathogenic yeast Cryptococcus neoformans is found during infection as blastoconidia. However, this fungus exhibits striking variations in cellular structure and size, which have important consequences during infection. This review will summarize the main aspects related with phenotypic and morphological variations in C. neoformans, which can be divided in three classes. Two of them are related to changes in the capsule, while the third one involves changes in the whole cell. The three morphological and phenotypic variations in C. neoformans can be classified as: (1) changes in capsule structure, (2) changes in capsule size, and (3) changes in the total size of the cell, which can be achieved by the formation of cryptococcal giant/titan cells or microforms. These changes have profound consequences on the interaction with the host, involving survival, phagocytosis escape and immune evasion and dissemination. This article will summarize the main features of these changes, and highlight their importance during the interaction with the host and how they contribute to the development of the disease

    Vegetales detenidos; con latidos. Karl Blossfeldt y Pilar Pequeño, Dos modos únicos

    Get PDF
    Actas de las Segundas Jornadas Imagen, Cultura y Tecnología celebradas entre el 1 y el 3 de julio de 2003 en la Universidad Carlos III de MadridPublicad

    On the time-stepping stability of continuous mass-lumped and discontinuous Galerkin finite elements for the 3D acoustic wave equation

    No full text
    We solve the three-dimensional acoustic wave equation, discretized on tetrahedral meshes. Two methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial discretization with the leap-frog time-stepping scheme, which is second-order accurate and conditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for simple cases, namely, the reference element with Neumann boundary conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into 6 tetrahedra with periodic boundary conditions, and its distortions. The CFL stability limit contains a length scale for which we considered different options. The one based on the sum of the eigenvalues of the spatial operator for the first degree mass-lumped element gives the best results. It resembles the diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show that mass-lumped continuous and SIP-DG finite elements have comparable stability conditions, with the exception of the elements of the first degree. The stability limit for the mass-lumped elements is less restrictive and allows for larger time steps.Geoscience & EngineeringCivil Engineering and Geoscience

    Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation

    No full text
    We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the leap-frog time-stepping scheme, which is second-order accurate and conditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for simple cases, namely, the reference element with Neumann boundary conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into six tetrahedra with periodic boundary conditions and its distortions. The Courant–Friedrichs–Lewy stability limit contains an element diameter for which we considered different options. The one based on the sum of the eigenvalues of the spatial operator for the first-degree mass-lumped element gives the best results. It resembles the diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show that the mass-lumped continuous and the discontinuous Galerkin finite elements of degree 2 have comparable stability conditions, whereas the masslumped elements of degree one and three allow for larger time steps.Geoscience & EngineeringCivil Engineering and Geoscience

    A comparison of explicit continuous and discontinuous Galerkin methods and finite differences for wave propagation in 3D heterogeneous media

    No full text
    Abstract only.Geoscience & EngineeringCivil Engineering and Geoscience
    corecore