5 research outputs found

    High-Efficiency All Polymer Solar Cell with a Low Voltage Loss of 0.56 V

    No full text
    Reducing voltage loss, namely, <i>V</i><sub>loss</sub>, has been demonstrated to be an effective way to improve the efficiencies of photovoltaic devices, and power conversion efficiencies (PCEs) exceeding 10% have been reported in non-fullerene based polymer solar cells (PSCs) with <i>V</i><sub>loss</sub> value lower than 0.6 V. However, for all polymer solar cells (APSCs), the PCEs lag far behind the non-fullerene PSCs with organic small molecular acceptors. And there have been no successful examples of high-efficiency APSCs along with low <i>V</i><sub>loss</sub> values so far. Here, we reported APSCs that demonstrated a high efficiency of 6.66% simultaneously with a small voltage loss of 0.56 V by using a new polymer PBDT-DFQX1 as donor and N2200 as acceptor. Notably, when PBDT-DFQX1 is combined with a small molecular acceptor (SMA) O-IDTBR, the relative SMA based PSC exhibited a higher PCE of 8.76% also with a low voltage loss of 0.56 V. These results indicated that PBDT-DFQX1 would be a promising polymer donor material in photovoltaic device application, and the strategy by minimizing the voltage loss to improve the photovoltaic efficiencies is still valid for APSCs

    Searching Missing Proteins Based on the Optimization of Membrane Protein Enrichment and Digestion Process

    No full text
    A membrane protein enrichment method composed of ultracentrifugation and detergent-based extraction was first developed based on MCF7 cell line. Then, in-solution digestion with detergents and eFASP (enhanced filter-aided sample preparation) with detergents were compared with the time-consuming in-gel digestion method. Among the in-solution digestion strategies, the eFASP combined with RapiGest identified 1125 membrane proteins. Similarly, the eFASP combined with sodium deoxycholate identified 1069 membrane proteins; however, the in-gel digestion characterized 1091 membrane proteins. Totally, with the five digestion methods, 1390 membrane proteins were identified with ā‰„1 unique peptides, among which 1345 membrane proteins contain unique peptides ā‰„2. This is the biggest membrane protein data set for MCF7 cell line and even breast cancer tissue samples. Interestingly, we identified 13 unique peptides belonging to 8 missing proteins (MPs). Finally, eight unique peptides were validated by synthesized peptides. Two proteins were confirmed as MPs, and another two proteins were candidate detections

    iTRAQ-Based Membrane Proteomics Reveals Plasma Membrane Proteins Change During HepaRG Cell Differentiation

    No full text
    HepaRG cell, a stabilized bipotent liver progenitor cell line, exhibits hepatocyte functions only after differentiation. However, the mechanism of transition from nondifferentiated to differentiated states, accompanied by proliferation migration and differentiation, remains poorly understood, particularly those proteins residing in the plasma membrane. In this study, the membrane protein expression change of HepaRG cell during differentiation were systematically analyzed using an iTRAQ labeled quantitative membrane proteomics approach. A total of 70 membrane proteins were identified to be differentially expressed among 849 quantified membrane proteins. Function and disease clustering analysis proved that 11 of these proteins are involved in proliferation, migration, and differentiation. Two key factors (MMP-14 and OCLN) were validated by qRT-PCR and Western blot. Blockade of MMP-14 further demonstrated its important function during tumor cell migration. The data sets have been uploaded to ProteomeXchange with the identifier PXD004752

    Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic <i>Nocardiopsis xinjiangensis</i>

    No full text
    The genus <i>Nocardiopsis</i> is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na<sup>+</sup>-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress

    Special Enrichment Strategies Greatly Increase the Efficiency of Missing Proteins Identification from Regular Proteome Samples

    No full text
    As part of the Chromosome-Centric Human Proteome Project (C-HPP) mission, laboratories all over the world have tried to map the entire missing proteins (MPs) since 2012. On the basis of the first and second Chinese Chromosome Proteome Database (CCPD 1.0 and 2.0) studies, we developed systematic enrichment strategies to identify MPs that fell into four classes: (1) low molecular weight (LMW) proteins, (2) membrane proteins, (3) proteins that contained various post-translational modifications (PTMs), and (4) nucleic acid-associated proteins. Of 8845 proteins identified in 7 data sets, 79 proteins were classified as MPs. Among data sets derived from different enrichment strategies, data sets for LMW and PTM yielded the most novel MPs. In addition, we found that some MPs were identified in multiple-data sets, which implied that tandem enrichments methods might improve the ability to identify MPs. Moreover, low expression at the transcription level was the major cause of the ā€œmissingā€ of these MPs; however, MPs with higher expression level also evaded identification, most likely due to other characteristics such as LMW, high hydrophobicity and PTM. By combining a stringent manual check of the MS<sub>2</sub> spectra with peptides synthesis verification, we confirmed 30 MPs (neXtProt PE2 āˆ¼ PE4) and 6 potential MPs (neXtProt PE5) with authentic MS evidence. By integrating our large-scale data sets of CCPD 2.0, the number of identified proteins has increased considerably beyond simulation saturation. Here, we show that special enrichment strategies can break through the data saturation bottleneck, which could increase the efficiency of MP identification in future C-HPP studies. All 7 data sets have been uploaded to ProteomeXchange with the identifier PXD002255
    corecore