54 research outputs found

    A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma

    Get PDF
    Molecular profiling of lung cancer has become essential for prediction of an individual’s response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity

    Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas

    Get PDF
    The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13 significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma

    The Effect of Plasma Triglyceride-Lowering Therapy on the Evolution of Organ Function in Early Hypertriglyceridemia-Induced Acute Pancreatitis Patients With Worrisome Features (PERFORM Study): Rationale and Design of a Multicenter, Prospective, Observational, Cohort Study

    Get PDF
    Background: Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease with multiple etiologies. The prevalence of hypertriglyceridemia-induced acute pancreatitis (HTG-AP) has been increasing in recent years. It is reported that early triglyceride (TG) levels were associated with the severity of the disease, and TG- lowering therapies, including medical treatment and blood purification, may impact the clinical outcomes. However, there is no consensus regarding the optimal TG-lowering therapy, and clinical practice varies greatly among different centers. Our objective is to evaluate the TG-lowering effects of different therapies and their impact on clinical outcomes in HTG-AP patients with worrisome features. Methods: This is a multicenter, observational, prospective cohort study. A total of approximately 300 patients with HTG-AP with worrisome features are planned to be enrolled. The primary objective of the study is to evaluate the relationship between TG decline and the evolution of organ failure, and patients will be dichotomized depending on the rate of TG decline. The primary outcome is organ failure (OF) free days to 14 days after enrollment. Secondary outcomes include new-onset organ failure, new-onset multiple-organ failure (MOF), new-onset persistent organ failure (POF), new receipt of organ support, requirement of ICU admission, ICU free days to day 14, hospital free days to day 14, 60-day mortality, AP severity grade (Based on the Revised Atlanta Classification), and incidence of systemic and local complications. Generalized linear model (GLM), Fine and Gray competing risk regression, and propensity score matching will be used for statistical analysis. Discussion: Results of this study will reveal the current practice of TG-lowering therapy in HTG-AP and provide necessary data for future trials

    A Systematic Analysis on DNA Methylation and the Expression of Both mRNA and microRNA in Bladder Cancer

    Get PDF
    Background: DNA methylation aberration and microRNA (miRNA) deregulation have been observed in many types of cancers. A systematic study of methylome and transcriptome in bladder urothelial carcinoma has never been reported. Methodology/Principal Findings: The DNA methylation was profiled by modified methylation-specific digital karyotyping (MMSDK) and the expression of mRNAs and miRNAs was analyzed by digital gene expression (DGE) sequencing in tumors and matched normal adjacent tissues obtained from 9 bladder urothelial carcinoma patients. We found that a set of significantly enriched pathways disrupted in bladder urothelial carcinoma primarily related to "neurogenesis" and "cell differentiation" by integrated analysis of -omics data. Furthermore, we identified an intriguing collection of cancer-related genes that were deregulated at the levels of DNA methylation and mRNA expression, and we validated several of these genes (HIC1, SLIT2, RASAL1, and KRT17) by Bisulfite Sequencing PCR and Reverse Transcription qPCR in a panel of 33 bladder cancer samples. Conclusions/Significance: We characterized the profiles between methylome and transcriptome in bladder urothelial carcinoma, identified a set of significantly enriched key pathways, and screened four aberrantly methylated and expressed genes. Conclusively, our findings shed light on a new avenue for basic bladder cancer research

    The Study of Lung Cancer Personalized Medicine Through Circulating Cell Free DNA Test

    No full text

    Construction of SERS chip based on silver nanoparticles and detection of sports doping β-agonists

    No full text
    Sports doping is a persistent challenge in competitive sports, undermining the integrity of athletic competitions and posing health risks to athletes. This study focuses on the development of a surface-enhanced Raman spectroscopy (SERS) chip for the detection of β-agonists, such as clenbuterol, ractopamine, and salbutamol, which are commonly abused as performance-enhancing drugs. The SERS chip was constructed by depositing silver nanoparticles (AgNPs) onto activated carbon (AC) as a substrate, utilizing their plasmonic properties and ease of synthesis. The successful loading of AgNPs onto AC was confirmed by SEM imaging, demonstrating a uniform distribution of AgNPs on the surface of AC. The SERS chip exhibited enhanced sensitivity in detecting β-agonists compared to conventional methods. The SERS signals of the analytes decreased with decreasing concentrations, indicating the chip's ability to detect low-concentration analytes. Notably, the AC/AgNPs composite demonstrated stronger SERS signals compared to AgNPs alone, attributed to the improved loading efficiency and electromagnetic field enhancement provided by the AC substrate. The detection limit of the AC/AgNPs SERS chip for clenbuterol, ractopamine, and salbutamol was found to be 0.003 mg/L, 0.001 mg/L, and 0.007 mg/L, respectively. The developed SERS chip offers rapid and sensitive detection of β-agonists in sports doping control. It overcomes the limitations of conventional methods, such as immunoassays and chromatographic techniques, in terms of sensitivity, selectivity, and sample preparation time. The application of SERS in anti-doping efforts holds great promise for maintaining fair and clean sports competitions
    • …
    corecore